FAO perspective on Climate Smart Agriculture, Biodiversity loss and Uncertainties under climate change

Federica Matteoli and Damiano Luchetti 27 May 2020

Biodiversity

The variety and variability of life on hearth.

Three levels:

- 1. Genetic level
- 2. Species level
- 3. Ecosystem level

Biodiversity for food and agriculture

The variety of life at genetic, species and ecosystem levels that contributes to agriculture and food production

Source: FAO. 2019. The State of the World's Biodiversity for Food and Agriculture - In brief. Rome. Available at http://www.fao.org/3/CA3229EN/CA3229EN.pdf

FAO's Global Assessments

Genetic Resources are under threat

Source: FAO, 2015. The Second Report on the State of the World's Animal Genetics Resources for Food and Agriculture. Rome. Available at http://www.fao.org/3/a-i4787e.pdf

fao.org/climate-smart-agriculture

Biodiversity for food and agriculture is under threat

Source: FAO.

the World's

Food and

brief. Rome.

Available at

A3229EN.pdf

Biodiversity for

Agriculture - In

Drivers of biodiversity loss

- 1. Changes in land and sea use
- 2. Direct exploitation of organisms
- 3. Climate change
- 4. Pollution
- 5. Invasive alien species

Unsustainable agriculture practices contribute to most of these drivers

Risks for agriculture

- Loss of genetic diversity
- Loss of crop wild relatives
- Loss of species diversity within farms and in rangelands
- Loss of species diversity
- Loss of habitats
- Degradation of ecosystems

Loss of a reservoir of genetic variations and related adaptation capacity

Loss of ability to adapt to changing conditions

Increased vulnerability to pests and diseases and to changes

Loss of productivity

Loss of ecosystem services such as pollination, soil fertility

Food insecurity

Loss of biodiversity has an important impact on agriculture and food security

What can we do?

- Improve knowledge of characteristics and trends
- Strengthen institutional frameworks
- Improve awareness, education, training and research

Plan of Actions

- Plan of Actions
- Strengthen breeding strategies and programmes
- Expand and diversify conservation programmes

Source: Global Plan of Action for Animal Genetic Resources for Food and Agriculture

The use of many biodiversity-friendly practices is reported to be increasing

	Production systems (PS)													
Management practices and approaches	Livestock grassland-based systems	Livestock landless systems	Naturally regenerated forests	Planted forests	Self-recruiting capture fisheries	Culture-based fisheries	Fed aquaculture	Non-fed aquaculture	Irrigated crop systems (rice)	Irrigated crop systems (other)	Rainfed crop systems	Mixed systems		
Landscape management	R	7	7	7					7	7	7	R	of cou	
Ecosystem approach to fisheries					7	7	7						that rep trend	g u xort ls (9
Restoration	7		7	7	7				7	7	7	7	0-9	
Diversification	R	7	Z	7	7	7	Z		7	Z	Z	Z	10–19	
Home gardens	7	\leftrightarrow	7	7					7		Z	7	20–29	
Agroforestry	R	7	R	Z					Z	7	Z	R	30–39	

Source: FAO. 2019. *The State of the World's Biodiversity for Food and Agriculture*. Rome.

	Production systems (PS)													
Management practices and approaches	Livestock grassland-based systems	Livestock landless systems	Naturally regenerated forests	Planted forests	Self-recruiting capture fisheries	Culture-based fisheries	Fed aquaculture	Non-fed aquaculture	Irrigated crop systems (rice)	Irrigated crop systems (other)	Rainfed crop systems	Mixed systems		
Polyculture/aquaponics							7					7		
Organic agriculture	7	7	7	7					\leftrightarrow	7	7	7		
Low external input agriculture	אצ	7	7	7					R	я	лe	Я		
Sustainable soil management	Я	л	7	Я					7	я	я	я	Propo	ortio
Management of micro- organisms	7		7	R	7				7	я	7	7	of cou reportin that rep	intri g th xort
Conservation agriculture	7	7	7	7					7	7	7	7	trend	s (%
Integrated plant nutrient management	я	7	7	R					л	я	я	Я	0-9 10-19	
Integrated pest management	7	R	7	R	7				R	я	я	R	20-29	
Pollination management	7	7	7	7						R	Z	7	30–39	
Enrichment planting			7	7								7		
Reduced-impact logging			7	7										
Domestication	7	\leftrightarrow	⊼⊵	7			7		7	7	7	7		
Base broadening	7	7	۶Ľ	7					7	7	7	7		

Notes: Analysis based on 91 country reports. See main report for details of the methodology.

and a

.

fao.org/climate-smart-agriculture

F

Climate-Smart Agriculture approach Climate-Smart Agriculture (CSA):

- is an approach to guide transformation
 and reorientation of agricultural systems
 to effectively support development and
 ensure food security in a changing climate;
- is not a set of practices that are universally applicable;
- is context and location specific;
- works at multiple scales.

Climate-Smart Agriculture: 3 Pillars

Sustainably increase agricultural productivity and incomes

Adapt and build resilience of people and food systems to climate change

Reduce and/or remove greenhouse gas emissions, where possible

Climate-smart agroforestry systems in the Central American Dry Corridor

Integrated systems

Pillar 1: Productivity & Incomes	Pillar 2: Resilience & Adaptation	Pillar 3: Mitigation				
Increased soil fertility/ biodiversity	 Increased resilience to drought due to increased soil moisture contents: Higher water infiltration rates and water retention capacity of soils Reduced loss of water to surface 	Reduced pressure on forest and reduced GHG emissions through avoided burning forest burning				
Increased crop yields	runoff;					
Increased land productivity	Increased resilience to high- intensity rainfall events:	Removal of GHG from the atmosphere through carbon				
Increased biodiversity of the farming system. Diversified livelihood/farm income from	 Reduced erosion and loss of top soil; Reduced crop damage. 	sequestration by soils and storage as soil organic carbon				
tree products		Source. Schnetzer, 2018				

Adapt and build resilience of people and food systems to climate change

Enhancing on-farm biodiversity

(e.g. varietal mixtures, intercropping, crop rotations)

- Diversification of farm income
- Greater resilience to pests and diseases, also under changing climate conditions
- Enhanced ecosystem service and production factor: pollination

Source: Wageningen University

CSA practices for crop production

Adapt and build resilience of people and food systems to climate change

Reduce and/or remove greenhouse gas emissions, where possible

Grazing management

(Rotational grazing)

- Improved grassland productivity
- Avoidance of land degradation/restoration of degraded pastures, greater resilience to weather extremes and climate variability
- Higher quality/digestibility of forage, reduced GHG emissions from enteric fermentation

CSA practices for livestock production

© Theodor Friedrich

© Georgia Grazing Lands Conservation Coalition

Sustainably increase agricultural productivity and incomes

- High capacities for sequestering and storing carbon.
- Acting as natural barriers to physical impacts of climate change.
- Contribute to the sustainable supply of fish.
- Improved resilience, can contribute to stabilizing the availability of nutritious food and securing income.
- Enable the development of stronger social systems and create livelihood options from within the communities that rely on fisheries and aquaculture.

Adapt and build resilience of people and food systems to climate change Reduce and/or remove greenhouse gas emissions, where possible

Well-managed mangroves and their biodiversity

Water, agriculture & climate change

We have access to very little of the available water on our planet. And 70 percent of our water withdrawals are used up by agriculture, yet competition with other sectors for water is increasing.

In addition to the increasing demand for water due to population increase and changing diets, we must also consider the issue of water scarcity, the lack of sufficient available water resources to meet water needs, which is becoming one of the leading challenges of the twenty-first century.

By 2025 **1.8 Billion** people will be living in countries or regions with absolute water scarcity and **two-thirds of the world population** could be living under water stressed conditions

Water, agriculture and climate change

Water scarcity is expected to intensify as a result of climate change

Higher rates of evapotranspiration from forests, rangeland and cropland Increased evaporation from reservoirs, water bodies and wetlands

Increased variability in precipitation more extreme weather events

> More frequent floods affecting human settlements and cropland

rise an water i

- More pressure on groundwater More frequent and longer to compensate for more variable periods of soil moisture deficit affecting crops

Glacier melting

and change in

snowmelt

regime

Increased demand for irrigation water electricity generation and irrigation

Water sector and Biodiversity

Landscape management strategies include

- Buffer strips along water bodies to reduce the run-off of nutrients, chemicals and sediments from farming, helping to improve water quality.
- Ecosystem degradation is a contributing factor in several major water related disasters.
- Healthy ecosystems is increasingly recognized as a means of disaster risk reduction.
- Ecosystems are increasingly being used to augment, or replace, built disaster reduction infrastructure, such as dykes, and often with significant economic gains resulting from reduced operational and capital costs.
- Similarly restoring soils and vegetation in dryland landscapes is becoming a significant and increasingly effective response to reducing risks from drought.

CSA implementation: A 5-actions process

What next?

- Integrate biodiversity in agriculture and climate change policies, projects and activities
- Re-educate the fields to a more varied, sustainable and traditional practices with the support of government incentives and technologies
- Economic and political frameworks need to be strengthened to help decision-makers change their way of thinking and acting.
- Review, harmonize and adapt existing policies related to CC and agriculture inserting CSA and biodiversity approaches across different sectors of government to address inconsistencies and gaps.

FAO perspective on Climate Smart Agriculture, Biodiversity loss and Uncertainties under climate change

Federica Matteoli and Damiano Luchetti 27 May 2020

Thank you for your attention