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This course explains the general aspects of sampling in forest inventories. 

About the course 

This course covers the general aspects of sampling in forest inventories, and aims to introduce the basic 

concepts and characteristics of a sampling study, as well as provide an overview of the most important 

components of a national forest inventory (NFI). 

Disclaimer: This course is not intended to adequately train experts in the sampling statistics that are 

needed to plan, analyze, report and correctly interpret sample-based estimates from an NFI. 

 
Who is this course for? 

The course is targeted mainly for those who engage in sampling and analysis phases of an NFI, but can 

be taken by anyone with an interest in the subject. Specifically, this course targets: 

1. Forest technicians responsible for implementing their country’s NFIs 

2. National forest monitoring teams 

3. Students and researchers, as curriculum material in forestry schools and academic courses 

4. Youth and new generations of foresters 

 
Course structure 

There are three lessons in this course. 

Lesson 1: About sampling This lesson introduces the basic concepts and terms associated with 

statistical sampling. It provides an overview of the relevant 

characteristics of a sampling study and explains the basics of sampling 

for a non- expert audience. 

Lesson 2: Design 

elements of a sampling 

study 

This lesson presents the basics of design elements of sampling studies 

as they are relevant to NFIs, and the concepts to consider while 

preparing a sampling strategy. It also explains how to calculate the 

associated sample size. 
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Lesson 3: Estimation 

design 

This lesson looks into the methods and formulae needed to derive 

unbiased estimates from the data collected following a certain sampling 

strategy. 

 

About the series 

This course is the third in a series of eight self-paced courses covering various aspects of an NFI. 

Here’s a look at the complete series: 

 
Course 

 
You will learn about 

Course 1: Why a national 
forest inventory? 

Goals and purpose of an NFI and how NFIs inform policy- and 
decision-making in the forest sector. 

Course 2: Preparing for a 
national forest inventory 

The planning and work required to set up an efficient 
NFI or a National Forest Monitoring System (NFMS). 

? Course 3: Introduction to 

sampling 

(You are currently studying this course) 

Course 4: Introduction to 
fieldwork 

Considerations for fieldwork, plot-level variables and tree-
level measurements. 

Course 5: Data management in 
a national forest inventory 

Information gathering and data management for NFIs. 

Course 6: Quality assurance 
and quality control in a 
national forest inventory 

QA and QC procedures in forest inventory data 
collection and management. 

Course 7: Elements in data 
analysis 

Typical approaches/calculations in data analyses and related 
topics. 

Course 8: National forest 
inventory results: Reporting 
and dissemination 

NFI reporting and the importance of reporting in the 
context of REDD+ actions. 
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Lesson 1: About sampling 

Lesson introduction 

This lesson introduces the basic concepts and terms associated with statistical sampling. 

It also provides an overview of the relevant characteristics of a sampling study and explains the basics of 

sampling for a non-expert audience. 

 

Learning objectives 

At the end of this lesson, you will be able to: 

1. Describe the importance of sampling in forest inventories 

2. Define the rationale of statistical sampling. 

3. Explain the basic concepts and terminology associated with sampling 

4. Explain the importance of accuracy and precision during the estimation process 

Why is sampling necessary? 

Before we start learning about some of the relevant aspects of statistical sampling, let’s take a step back 

and briefly think about the fundamental rationale of sampling studies in general. 

Why is sampling such a fundamental concept in the context of forest inventories and monitoring? 

The answer to this question is very simple: When we look at the field assessment of core variables, it is 

neither feasible nor efficient to observe all the elements in the forest area of a country. Instead, 

experts must make inferences about the current state and change of target variables by making 

observations on relatively small subsets or “samples” of the total forest area—referred to as sample 

plots. 

We may imagine sampling to be similar to opening small windows that allow us to look at parts of the 

population in order to get an impression of the whole. 
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A closer look at these samples of the total area, reveals that the credibility of results of a sampling study 

is influenced by the way we select these samples, the methods we use to obtain the single 

observations and the applied estimation techniques and calculations. These are also the three design 

elements of a sampling study, which need to be planned along statistical considerations—something we 

will consider in greater detail in the next lesson. 
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What is statistical sampling? 

The selection process ensures that the sampling elements may be considered representative for the 

population. When sampling follows the rules of statistics, we call it statistical sampling. Statistical 

sampling is largely determined by randomization (and by the absence of subjective or arbitrary 

considerations), which means that by applying a random selection, we guarantee that each element in 

the population has a defined and known probability of being selected. 

Other criteria for selection, such as fairness or objectivity, are not enough. Because the selection 

probabilities play a central role in statistical sampling, these techniques are also called probabilistic 

sampling. By that, representativeness of the sample is guaranteed, and unbiased estimators (i.e. 

statistically correct estimation approaches) are available for most of the common sampling and 

observation designs. 

Subjective selection of the “most representative” population elements is not statistical sampling and 

does not allow statistical estimation nor inference. 

Imagine sending out experts with the task of finding the “most representative” plot in a forest area (with 

regard to tree density, species mixture, slope, soil conditions, and so on). It is quite obvious that an 

estimate we derive from such a plot would exclusively refer to the expert’s choice (while another expert 

would very likely arrive a a different choice). 

While an expert-based guesstimate may be good and close to the target population value, everything 

depends on the expert and no objective methodological approach is defined that could possibly be 

repeated by someone else. Statistical sampling, on the contrary, is transparent in all its methodological 

steps. 
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Did you know? 

A lot of statistical sampling techniques were invented and presented in the context of forest inventories. While 

sample plots were already in wide use in forestry in the 19th century, a more formalized technique of statistical 

sampling for large populations was developed—and gradually accepted—as a methodology to produce valid results 

around 1900 only: in 1895, the Norwegian statistician A.N. Kiaer presented a sampling approach that was then called 

'the representative method', where 'representativeness' played a central role. 

 
Forest inventory statisticians at that time made significant contributions to the analysis of systematic line sampling. 

The first NFI that was rooted in statistical sampling was implemented in 1919-1930 in Norway. This was followed by 

other Nordic European countries in the early 1920s: Finland in 1921–1924 and Sweden in 1923–1929. 

 

Statistical soundness is one of the major characteristics in statistical sampling, as applied in forest 

monitoring. It is only by adhering to the principles of statistical sampling that the chosen inventory 

design can convincingly be defended, when—for example—doubts about the results are expressed. 

Deriving inferences from a sample 

Descriptive statistics deal with the quantitative characterization of a population of interest, or the 

domain about which such descriptive statements shall be produced. Sampling aims to derive 

inferences/conclusions about the total population from a limited number of selected sampling 

elements. In forest inventories, these elements are typically sample plots, which are subsets of the total 

forest area. 

From the analysis of collected observations on the target variables of these sample plots, we can derive 

a statistical estimate of the unknown true population parameter. For example: from the biomasses per 

plot of the n sample plots we may produce an estimate of the biomass per hectare for the entire 

population. It is intuitively clear that we cannot expect that such an estimate is equal to the true value—

it is an approximation, and it will vary whenever we take another sample following the same inventory 

design. 
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Note 

The true values in a population are called parameters while the estimates produced from sampling 

studies are referred to as statistics. The true mean value of a population, the parametric mean, is 

estimated from the mean value in the sample. 

It is important to have this distinction clear: the true parameters will never be known but estimated 

by the sampling statistic. The true value is a constant, one fixed value. The sampling statistic ( = the 

estimated value) is a random variable that can take on many different values—depending on which 

sample had been selected— and follows a certain distribution. 

 

Let’s look at some examples of how the definitions provided above could be applied to a forest 

inventory for biomass. 

1. The population of—for example, trees—is determined by an area, represented by an infinite 

number of dimensionless point centers where sample plots could be selected. 

2. The sample consists of a certain number of plots (sample size) that has been selected following 

the sampling design. 

3. The true value—or population parameter—of, for example, mean biomass, would be the mean 

biomass estimated over all possible infinite sampling locations in the area. Since we deal only 

with the current plot design, the true value remains unknown. 

4. Using a suitable plot and estimation design, we can derive an unbiased estimate from our 

sample at hand. 

Estimator and estimate 

Whenever we talk about an estimator in statistical sampling, we mean the calculation algorithm or 

formula that we use to produce an estimation. In order to produce statistical estimates, the estimator 

needs to reflect: the underlying selection process of sampling elements; and the way in which the 

single observations were obtained from the sampling element. 
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What is the underlying population concept in forest inventories? 

When sample plots are the “sampling elements” that are being selected, the next question that we 

arrive at is “what is the population then”? In general terms, a population is defined as the set of all 

sampling elements that theoretically can be selected. In forest inventory, we commonly use sample 

plots whose location is being selected by selecting a sample point. Then, the population is defined by all 

possible sample points within the area of interest. How many are those? 

The number of points in any area is infinite. Sample points are selected from a continuum, and we call 

this an infinite population. The population is then 'the total number of possible sample plots in the 

defined area under study', where these sample plots are installed around the selected sample points. 

However, since many variables of interest are aggregates of measurements on single trees found on 

these sample plots, they will only vary once the composition of included trees changes. 

Therefore, for such variables, we can refine the population concept and say: 'the population is 

composed of all mutually exclusive clusters of trees that have a positive probability to be included jointly 

by the defined plot design'. The size of this population is not infinite, there is only a finite number of 

options for joint inclusions of spatially dispersed trees. 

Limitations for conclusions 

From a sample we can derive conclusions/inferences only about the part of the population that has a 

positive probability to become part of the sample. We call this part of the population the sampling 

frame. In the best case, the sampling frame comprises the complete population of interest, but in 

reality, it usually excludes some parts of the forest area for various reasons like lack of accessibility or 

risk of entry. 

All our estimates refer exclusively to the set of sampling elements that are in the sampling frame and we 

need to make sure that the sampling frame is covering the maximum possible of the whole population. 

Population vs. sampling frame 

Imagine a country does not use a biophysical forest definition—based on quantitative and qualitative 

criteria—but an administrative or legal definition of 'forest land'. If the selection of sampling elements is 

limited to this sampling frame, we cannot derive any conclusions about trees and biophysical forests 

that occur outside of the defined forest land. All conclusions would refer to the forest area inside the 



  
Course 3: Introduction to sampling 
 

 

 

 
Text-only version  © FAO 2024 

 

11 

defined forest land exclusively. Hence, both population and sampling frame need to be clearly defined 

and mentioned during the reporting and interpretation of results. 

In addition, there might be some points in the sampling frame, which cannot be accessed due to denied 

access or security reasons. Such missing observations are called non-response. The difference between 

sampling frame and non-response is: the sampling frame defines the sampling elements that can 

supposedly be selected and measured. But it may happen that some sample points turn out to be 

inaccessible—which are the non-response points, and different techniques are available to deal with this 

problem. Commonly, the rates of non-response are relatively low in NFIs. While there are imputing 

techniques to make model-based predictions of the would-be observations of such non-response plots, 

in NFIs, they are usually ignored, and the sample size is reduced. 

The diagram below shows that a target population (area inside solid line) may often not coincide with 

the sampled population (area inside dotted line). Example A is under-coverage, very typical in NFIs, 

where certain areas of the population have been previously classifled as, for example, not accessible. 

Example B is over-coverage, more rare in NFI contexts, but possible if the target population of interest is 

a particular subpopulation of the country, whereas the sampling was originally designed for the whole 

country. In both cases, some sampling units were accessible (respondent) and some inaccessible (non-

respondent). 

  

Sample units:  

n Respondent unit   

  Non-respondent unit 
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Basic concepts of sampling 

Before we go deeper into some practical considerations about sampling in the NFI context, you should 

familiarize yourself with some relevant concepts and some central terminology. Even if statistics tend to 

become complex and sometimes not easy to digest, a lot of what is expressed in complex formulae is in 

fact relatively easy to understand with some basic math—and is often also quite intuitive. 

In the following section, we will concentrate on several statistical concepts and touch only on those that 

are relevant to NFIs. However, there is much more to learn about forest inventories than just these few 

concepts. 

Some important concepts and terminology 

When we take a sample from a population (or from the sampling frame) there is not one single result: 

every selection of a new alternative sample will deliver a different estimate that is equally valid as all 

others. 

As we are not able to determine the one and unique true value (called the parameter) of the population 

from a sample, the estimate that we derive always carries uncertainty. Only if the selection of samples 

follows statistical criteria, and the applied formulae, or the estimators, are correct, will we be able to 

determine the margin of this uncertainty. 

In fact, when we determine this margin, this is also an estimate. A typical measure of uncertainty is the 

confidence interval, which defines an interval around the estimated value in which we expect the true 

value with a defined probability. 

What is sample size? 

Sample size refers to the number of independently selected observations (observed sampling elements) 

that are drawn from the sampling frame. Here, the term “independent” means: the selection of one 

element has no effect on the selection of another. Such a selection process takes place if single sample 

elements are selected randomly. 

In forest inventories, however, this is rarely the case, because samples are collected at fixed intervals. It 

is important to note that “independent selection” as described here, should not be confused with “the 

independence of variables,” which is a completely different concept. 
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More information on how to determine the sampling size for various forest inventory designs will be 

provided in Lesson 2. 

What is the difference between sampling intensity and sample size? 

Sampling intensity refers to the proportion of the sampling frame that is observed. Sample size, on the 

other hand, is about the absolute number of (independently) selected sampling elements. 

Sampling intensity is defined as the fraction of population of sampling elements that come into the 

sample. However, as such a concept is not applicable to the infinite population, we define sampling 

intensity in forest inventories via area: it is the fraction of the sampled area (= the sum of all plot areas) 

from the total area over which the population is defined. 

What does population variance mean? 

The population variance quantifies the variability in the population. It is a characteristic of the 

population of sampling elements. That is, for each population element, there is one value for a specific 

target variable, such as biomass per hectare. The parametric population variance is the true variance of 

all these values. And this true (parametric) variance can be estimated from a sample. 

How does population variance differ from error variance? 

This distinction is a key element to understand a large portion of NFI relevant sampling statistics. While 

the population variance is an estimate of the variability among population elements (observations from 

inventory plots), the error variance is a property of the sample. That means it quantifies the expected 

variation among repeated estimates of the same target variable (e.g. mean biomass per area). 

Let’s suppose an NFI is carried out repeatedly for a thousand times, every time with a new selection of 

plots. In this case, the variation among all the single means is an estimate of the error variance. This 

information is important for judging the quality of a sample as it gives an answer to the question “what 

would happen if we repeated our sample again and again - would we come up always with quite similar 

results, or would we expect that repeated inventories would lead to widely varying results? 

In the latter case, we would say, that our estimate is less precise, and in the former that our estimate is 

precise. Usually, we do not report the error variance but its square root: the standard error. This is one 

of the most relevant statistics estimated from a sample, as it quantifies the precision of estimation. The 

reason that the square root is reported and not the error variance, is very simple: the standard error 
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comes in the same units like the estimate itself, and is, therefore, much easier to understand. 

It is intuitively clear that trust and credibility or certainty in the results depend on this error variance. If 

there is no information given about the error variance, a user of the information may conclude that a 

single inventory alone is not enough to build on (since the next will likely produce a different estimate). 

Accuracy and precision 

We have referenced the concept of precision previously, but let us now highlight the relevance and 

meaning of both accuracy and precision as we use it in forest inventory sampling. Let's understand the 

concepts better with the help of a dartboard example. 

 

Low precision, high accuracy Low accuracy, high precision 

Imagine you throw 4 darts. The distribution of 

hits around the centre is an expression of your 

accuracy. (averaging the hits will result in a 

position close to the centre). 

Continuing with the dartboard example, the 

spread of single hits is an expression of your 

precision (repeated throws are close together). 

 

 

 

As you see in the graph below, we can graph a distribution over all collected observations (which are 

here single values on the x-axis). The y-axis values indicate the relative frequency of observations for the 

respective values. While the solid distribution leads to a relatively high precision (narrow distribution) of 

the estimated mean y bar, as in the figure, it is not very accurate (i.e. it is biased) because of its 

deviation from the true parameter µ. On the contrary, the dashed line distribution results in a very 

accurate estimate of the mean (here identical to the parametric value µ), but relatively low precision. 
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Let's now look at two examples where 3 500 sampling plots measured the mean biomass per ha. The 

yellow histogram depicts a distribution with relatively high precision (narrow distribution) of the 

estimated mean: , but low accuracy (i.e., it is biased) because of its deviation from the true parameter. 

On the contrary, the blue histogram reflects a very accurate estimate of the mean (here identical to the 

parametric value µ), but relatively low precision, because of the wider width of the distribution. 

 

 

Looking back at the previous graph, remember that the sampling statistic calculated from one sample is 

but one estimate of the true population biomass, based on the one set of selected plots. If we 

(imaginarily) repeat the estimation of the sampling statistic with a different selection under the same 

design, we will produce different estimates of the population biomass. The distribution of these 

estimated means represents the relative frequency of these different estimates of the population 

biomass. 

The width of this distribution is an expression of the variability (or dispersion) around the estimated 

mean value (y bar). If the dispersion of these values is low and they are relatively close together, we can 

conclude that repeated alternative samples would likely result in similar estimates. Therefore, the width 
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of this distribution also allows a statement about precision (see graph above). 

On the other hand, accuracy—or correctness—is the deviation of expected value from repeated 

samples from the true population parameter—this deviation is also called bias or estimator bias. Since 

the true value remains unknown, the size of this deviation cannot be quantified from the sample itself. It 

is rather a property of the applied estimator and an expression of a systematic error that cannot be 

compensated by increasing sample size. 

The only way to guarantee 'unbiased' estimates is a mathematical proof that the sampling design and 

applied methods allow correct estimates (design-unbiased) or empirical simulations (in case the 

estimation relies on model application). 

i Keep in mind: In sampling studies we have no information about the true population 

value (target), we just have the sample at hand (darts). We are blind in regard to the 

position of the centre, and accuracy can be guaranteed only by using unbiased estimators. 

 

What are the possible reasons for biased estimates? Let's find out. 

Selection bias A non-statistical selection was used, and it is not guaranteed that the sample 

is representative (e.g. a subjective selection of plots close to the road). 

Observer bias Observations or measurements are systematically wrong (e.g. DBH always 

measured in 1 m height instead of 1.3 m). 

Estimator bias A systematically wrong calculation (e.g. applying constantly a wrong plot 

expansion factor, such that all plot observations are too high). 

Model bias In case of model-based or model- assisted sampling techniques, but also in 

case of modelled observation (e.g. application of wrong biomass models), a 

potential bias of the model will directly affect the estimation bias. 
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Note 

The limited meaning of sampling intensity regarding precision of estimation 

In inventory guidelines or even government regulations we sometimes find thresholds for the 

sampling intensity (minimum area proportion) that should be sampled (e.g. at least 3 percent of the 

forest area). However, this sampling intensity has very little meaning for the resulting precision of 

estimates. Precision depends on sample size. Have a closer look at the estimators presented at the 

end of this lesson and you will see that “sampling intensity” cannot be found in any of the formulae. 

 

Point and interval estimates 

Usually, the estimated value alone is not sufficient information for a proper interpretation or for 

reporting and decision-making. Remember, we have not observed everything but derived an estimate 

from a sample. If we report about an estimated mean (e.g. mean volume or biomass per unit area), 

which we call a point estimate, this information alone does not allow any judgement about the quality 

(or reliability, credibility, or certainty) of this estimate. 

We would also need additional information about the estimated precision of such point estimates so 

that we inform about its quality. Such information is given in terms of an interval around the estimated 

mean, in which we would expect the true value with a certain probability—and this is what we call an 

interval estimate. 

Quick tips! 

Reporting estimates 

When reporting estimates, it is good practice to say, “from our sampling study we estimate the 

growing stock to be 200m³/ha ± x” and not “from our sampling study we conclude that the growing 
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stock is 200m³/ha.” The fact that we are dealing exclusively with estimates is also evident from the 

fact that we accompany our estimates of mean values (point estimates) with estimates of precision of 

this estimate (interval estimates). 

 

Immediate questions that may arise here are: 

• From how many independent observations (plots) was this mean estimated? 

• How much did these single observations vary (= population variance)? 

• What is the expected variation of this mean if we were to (virtually) repeat the sample many 

times under the same design (= error variance)? 

All of the above-mentioned questions are influencing the width of the so-called confidence interval 

around an estimated mean. This confidence interval is a probabilistic statement from which we can 

learn in which interval around the estimated mean we expect to find the true (unknown) population 

parameter with a defined probability. 

This, however, is only possible if we assume a certain distribution of estimates, and this is the point 

where an interesting property of statistical samples comes into play. 

Distribution of samples 

A very interesting character of samples allows the definition of this interval: the estimates from 

repeated sampling tend to follow a normal distribution. This holds for larger samples exceeding a 

sample size of 30, which in sampling statistics is taken as a rough threshold that distinguishes small and 

large samples; estimated mean values from smaller samples follow the Student's t-distribution. For large 

samples, we can use the normal distribution to determine the upper and lower limits of the interval in 

which we expect the true value with a defined probability (e.g. 95 percent). 

The graphs below depict normal distribution and slightly different student’s t-distribution. Both allow 

deriving an interval in which we expect the true parametric value with a defined probability. 
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Graph illustrating normal distribution of samples. Diagram from Wikipedia, author M. W. Toews, under 

the Creative Commons License. 

 

Confidence intervals 

As part of the estimation process, we would like to assess the level of confidence we have on our 

estimates. This is reflected by how close the estimate would be to the true parameter, for every sample 

taken. If for all possible samples the estimates were very close to the true population parameter, we 

would have high confidence in our estimates. To assess it, we often use the confidence intervals. 

Formally, we may state that the probability P, that the true parameter, μ, is within a lower bound and 

upper bound is x%. The higher is that probability, the higher our confidence in our estimate is. For 

example, in the specific case of the estimate of the mean, our estimated confidence intervals (expressed 

https://upload.wikimedia.org/wikipedia/commons/8/8c/Standard_deviation_diagram.svg
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in the same units as the mean estimate) will define our bounds as: 

 

where the confidence interval C.I. is defined by Student’s t-distribution value and the standard error of 

the estimate: 

 

Commonly, 95 percent confidence intervals are given. The origin of these 95 percent confidence 

intervals goes far back in the history of statistics and there is no perfectly convincing argument in favor 

of the error probability of 5 percent. Another confidence interval (such as 90 percent) could just as well 

be used, as long as this is clearly stated. 

The standard error of estimates 

While looking at the single sample at hand (the one inventory that we have carried out), how can we 

derive an expectation about the variation of all other possible samples under the same design from the 

same population? In practice, of course, we cannot repeat the NFI many times. 

Well, we have learned that we can draw conclusions about the variability of (imagined) repeated 

samples from the single sample that we have at hand. The measure of this variability is the error 

variance. 

The so-called standard error is the square root of this error variance. In other words: it is the estimated 

standard deviation of all possible sample outcomes. The standard error is the most frequently reported 

measure of precision of estimation. Contrary to the error variance, it comes with the same units as the 

estimated statistic. It is therefore easier to interpret than the error variance. 

The following figure might help to disentangle these two different perspectives. In the upper graph we 

can see the distribution (variability) of population elements (e.g. plot values) from a single sample (bold 

line). 
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However, this single sample at hand is only one out of many possible samples (light green) that we could 

potentially draw. In the lower graph you see the distribution of all potential sample outcomes around 

the “expected value” and the standard error is the standard deviation of this distribution. 

 

 

 

Estimation under simple random sampling (SRS) 

We have arrived at the last segment of this lesson. In this section, we look at some more detailed 

explanations that will be discussed in the next lesson, and consider some estimators for simple random 

sampling (SRS). 
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Simple random sampling refers to an independent random selection of each single sampling element. It 

means we assume an unrestricted random selection of sampling locations in a forest area. Unrestricted 

random sampling means that all sampling elements have the same selection probability. This is the basic 

foundation of sampling statistics and very appropriate for explaining estimators, because it is 

straightforward enough to determine the selection probabilities, which here are equal for all elements. 

Even if rarely applied in forest inventory, this sampling design (or selection procedure) is fundamental 

for all statistics, because existing estimators are quite simple, and the characteristics of statistical 

sampling can be explained easily and is useful to mention for the sake of completeness. 

In the following table you see on the left-hand side the calculation formula for the parametric (true) 

population value, which remains unknown, and on the right-hand side you see the corresponding 

estimated (sample-based) population value. Observe that the concept behind the error variance in the 

table was already explained earlier (Lesson 1, Basic concepts of sampling, Some important concepts and 

terminology, How does population variance differ from error variance). 

 

These estimators given here are those for SRS. In later lessons, you will learn that they become slightly 

more complex as soon as we consider other sampling designs. 

Here, and also in the following lessons, we assume sampling without replacement and sampling from 

an infinite population - and therefore ignore the so-called finite population correction (fpc). For more 

details on fpc, refer to Gottingen University's wiki, or consult any textbook on statistical sampling. 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Finite_population_correction#Finite_population_correction
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Summary 

Before we conclude, here are the key learning points of this lesson. 

• Experts must derive inference and draw conclusions about the current state and change of 

target variables by making observations on relatively small subsets or “samples” of the total 

forest area— referred to as sample plots. 

• When sampling follows the rules of statistics, we call it “statistical sampling”. Statistical 

soundness is one of the major characteristics in statistical sampling, as applied in forest 

monitoring. 

• An “estimator” in statistical sampling refers to the calculation formula that we use to produce 

an estimation. 
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Lesson 2: Design elements of a sampling study 

Lesson introduction 

This lesson introduces you to the basic design elements of sampling studies, as they are relevant to NFIs, 

and the concepts to consider while preparing a sampling strategy. 

It also shows you how to calculate the associated sample size. 

Remember that working through this lesson will not make you an expert in any of the techniques 

described here but will enhance your awareness of general concepts. As with other lessons in this course, 

this is only a ‘primer’ for learners who do not have a sound basis in statistics, which is an indispensable 

requirement for a comprehensive understanding of statistical sampling. 

Learning objectives 

At the end of this lesson, you will be able to: 

• Describe the three technical design elements of a sampling study. 

• Describe sampling design. 

• Identify the types of sampling designs. 

• Explain the rationale and approach of stratification. 

• Describe plot/observation design. 

• Summarize the concept of slope correction. 

Three design elements of a sampling study 

The planning of any sampling study can be broken down into three basic technical design elements that 

provide a framework for sampling projects. Remember that in order to prepare a sampling study, all 

three design elements need to be considered to their fullest extent. Let's look at what each of these 

mean. 
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Sampling design Sampling design answers the question “How are sampling elements 

selected?” In forest monitoring, the sample points selected within the 

inventory area are theoretically infinitely small, hence considered 

dimensionless. These points define the position of the sample plot(s). 

 

 

Observation design 

 

Observation design, also known as plot design or response design, 

addresses the question “How are the observations taken on each 

sampling element?” Observation design is defined by the rules which 

guide how sample trees are included into the sample plot, with 

reference to the dimensionless sample point. 

 

Estimation design 

 

Estimation design answers the question “How are estimates 

calculated, and which statistical estimators are to be used?” This is the 

set of estimators, or formulae to be used for the given sampling and 

plot design. In sampling and plot design, you are free to choose 

designs that are "optimal" or fit your goals best. However, you are not 

free to choose the estimators. This is because they need to match the 

selected sampling and plot designs. Usually, there are only a few such 

estimators. 
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Remember that in this lesson, we will concentrate on typical sampling and plot designs in NFIs. 

Estimation designs will be covered in the next and final lesson of this course. 

Determining sample size 

One of the aspects defined in the sampling design is the number of sampling elements (plots) that 

should be observed. This is also called sample size. From a purely statistical perspective, there are two 

major criteria that determine the required sample size for a defined target precision for a given 

inventory situation: 

�The variability in the population i.e. the population variance. This can be estimated from a pilot study 

or taken from previous inventories/inventories in comparable areas. We refer here to the population of 

sample plots and the population variances will be different for different plot designs for the same forest 

area. 

� The desired target precision, which is a matter of definition. Commonly, precision is defined as half 

the width of the target confidence interval. 

What happens when there is no prior knowledge or previous inventory information? 

In absence of data from prior inventories or estimates of variability of the targeted variable, a pilot study 

can help obtain the relevant information. Since the estimated variance always refers to the specific plot 

design used, a relatively small number of plots could be distributed to different typical forest types 

found in a country. Such a pilot study may then deliver estimates on the population variance (even 

though probably not very precise ones). 

It might also be that similar forest types can be found in neighboring countries, from which estimates of 

the population variance may be available to inform our sampling design. 

When not even this information is available, forest statisticians may then have to rely on alternative 

information, often not based on probabilistic designs, like expert opinion or literature reviews. For a 

random sample, the sample size is as follows: 
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where A refers to the confidence interval, in absolute value, that we aim to achieve in our estimates (as 

percentage e% if expressed as relative to the mean), t is the corresponding value of the Student’s t- 

distribution and S² (usually pre-estimated from pilot studies or previous information) is the sample 

variance of the variable of interest, like volume per ha. CV percent is the coefficient of variation in that 

previous information, expressed in percentage as relative to the mean. The next exercise shows a 

practical example to calculate the sampling size. 

Practice exercise 

We want to calculate how many plots would be needed to estimate forest carbon stock with 

a precision of 10% (referring to the 95% confidence interval). Several studies have shown 

AGB values of around 100 t/ha with a standard deviation of 70 t/ha (CV%=70).  

How many plots should be measured if we assume simple random sampling? 

In order to calculate this, we need the corresponding value of the t-distribution for an error 

probability of 5% (or 0.05, two sided). However, to determined that t-value, we need to 

know the sample size – which is actually searched. Therefore, we first need to assume a 

sample size and then do an iterative calculation. We may start with a t- value of 2 in the first 

iteration – which corresponds to a large sample size of larger than 30 and get: 2²*70²/10² = 

196. 

By referencing the T-Table for this sample size of n=196 (from the first iteration), we have 

arrived at a t-value of ~1.97 - and the above estimate can be newly calculated to 

1.97²*70²/10² ~ 190. Note that this estimate of the required sample size is only valid for SRS. 

 

In reality, however, our resources are limited and only a certain number of fleld plots are feasible. In this 

case, we try to achieve the most precise result with the given budget. As you have learned already, 

increasing sample size will increase precision—we would therefore strive to plan for as many plots as 

possible under the given plot design and practical restrictions. 

https://www.tdistributiontable.com/
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What is my target variable? 

A forest inventory can only be optimized towards one single target variable (for which the precision 

should be maximized for the given resources). Frequently the stand basal area, which is highly 

correlated to volume and biomass, is used as the target variable. However, consideration of multiple 

purposes requires compromises in sampling and plot designs, and it may be that the sample size which 

optimizes precision of estimation for basal area, is not optimal for other variables. 

Sampling design 

Up to now, we have seen the basic concepts of sampling and considered the three elements of sampling 

design. Let’s now dive into some sampling design options. 

The sampling design defines the selection process for the sampling elements, that is, how the sampling 

elements are selected, and how many (sample size). The result of such a selection process is a list of all 

coordinates of sampling locations. 

Here we will limit ourselves to exclusively touch upon some typical sampling designs used in the NFI 

context. Do remember that we already visited before the SRS (check Lesson 1, Estimation under simple 

random sampling) as a mostly theoretical design that in practice is rarely used in NFIs, but was useful to 

establish a simple reference against which to compare the following options. 

Systematic sampling – the most common sampling design in NFIs 

Using a systematic grid of sampling locations is the standard sampling design in NFIs. Such a systematic 

sample has the advantage that the forest area is evenly covered by the sampling locations, and it 

ensures that all locations maintain a minimum distance from each other. It leads to a “proportional 

allocation” of sampling locations over the forest types that occur. And, as it evenly covers the whole 

area of interest, one may expect that such a sampling grid yields a “representative” sample of the 

population. 
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Theoretical considerations and numerous simulation studies have shown that systematic sampling 

virtually always yields higher precision than SRS, given the same number of observation points. 

We may explain that by the fact that systematic sampling evenly covers the whole population so that all 

conditions are about uniformly covered; another reason is that in systematic sampling, neighboring 

sample points do always have a defined distance and cannot be very close together: in forests and many 

other natural populations, plots that are close together are usually more autocorrelated than distant 

ones and that is inefficient. 

Note 

Sample size refers to the number of independently selected sampling elements, where independently means 

selected by randomization. Since all sampling locations in a systematic grid are flxed once a starting point and grid 

orientation have been selected, a systematic sample based on one randomization is only one (sample size = 1). From 

one single independent observation, however, we cannot derive an estimate of variance and therefore neither an 

estimate of precision! 

 

Looking at the variance estimator for SRS, if the sample size is n=1, then the denominator n-1 will be 

zero and, therefore, the variance of the variable of interest S2/y is not defined: 

 

Frequently, the SRS estimator is used to calculate the error variance of a systematic sample. It is known 

that such error variance will overestimate the true error variance, so we say that the SRS estimator is 

here a conservative estimator. 

That means that the true precision is higher than what we estimate with the SRS estimator - but we 

cannot say to what extent it is more precise. This underestimation of precision will also affect all other 

estimates, like the required sample size. 
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Stratification 

We have already learned in earlier lessons that our aim is to narrow the distribution of observations as 

much as possible because this will increase the precision of estimates. 

What else can we add to make the population ‘more homogeneous’ in order to increase precision? 

Stratification aims to sub-divide the population into more homogeneous sub-populations. We call these 

sub- populations strata (singular: stratum). In each stratum, an independent sample is taken. When we 

use simple random sampling in each stratum, we call the design stratified random sampling. That is: we 

do not introduce here a completely new sampling design, but apply SRS independently in each stratum; 

the new thing is actually, how we combine at the end the strata-wise estimates to arrive at a 

compounded total of all strata. 

To have more precision in this design, the stratification should be “homogeneous within the strata and 

heterogeneous among the strata.” 

 

Look at the diagram—the total forest area is subdivided into 

two different strata (light and dark), and we assume that 

each of them be more homogeneous than the total area and 

that they differ clearly in their mean values. In the sampling 

design, they are treated as independent sub-populations 

and different systematic grids are used. 

There are many ways in which a population can be sub-divided into sub-populations: stratification 

criteria is, for example: forest types, or growth regions with homogenous site conditions. Sometimes 

administrative boundaries are also used, however, this does not necessarily lead to more homogeneous 

sub-populations or enhanced precision. 

However, it may be used to facilitate inventory implementation or ensure that more precise per 

administrative units estimates can be delivered. 
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Calculation of sample size and allocation of samples to strata 

When sample size is determined in stratified sampling, two questions must be answered, how many 

samples altogether, and how to distribute/allocate the samples to the strata. 

The required sample size does always depend on the allowed error at a given error probability and on 

the variability within the population; in stratification we deal with a number of sub-populations, and we 

must consider that the sub-population variances differ among strata. 

As the strata usually have different sizes, these different sub-population variances must be weighted 

when calculating the total sample size. If there is a number of L strata denoted by the subscript h, and 

each stratum has the size (for example in terms of area) Nh, the weight of each stratum is given by 

Nh/N. 

But designing an inventory may also imply dealing with constraints in terms of the costs of the 

inventory. So while one may want to allocate sampling plots to minimize variability, one may also want 

to think on the total cost incurred in the inventory, where Ch is the cost per sampling unit in the stratum 

h. Then, total sample size can be calculated as: 

 

Where A is the allowable error, expressed as half the width of the target confidence interval. The allowable 

error is a matter of definition. Similar to the sample size estimation under SRS, provided before, S and A 

can be substituted by relative expressions: CV(%) and e(%). 

After having calculated the total sample size, these samples must be allocated to the different strata. To 

do so, one may consider three strata characteristics, either individually or together: 

1. The stratum size: the larger a stratum the more samples would be allocated. 

2. The variability in the stratum: the more variable a stratum is the more samples would be 

allocated. 

3. The cost per sampling unit: the larger the cost, the lesser samples would be allocated. 



  
Course 3: Introduction to sampling 
 

 

 

 
Text-only version  © FAO 2024 

 

32 

Proportional allocation Neyman allocation Optimal allocation with cost-minimization 

Allocating samples 

according to stratum size 

alone 

Considering the size of 

the strata and the 

variability inside the 

strata for allocation 

In this option, cost implications (c) are also 

included in addition to stratum size and 

variability within the strata 

 

 

 

 

  

 

Note 

Remember that any sampling technique can be applied per stratum. There may also be different sampling 

techniques used in the different strata. It is important that for each stratum the point and interval estimate of the 

target variables can be produced, in the best case, unbiasedly. 

In fact, the main characteristic of stratified sampling is that it consists of several independently implemented 

sampling studies. The only new thing is that one needs to flnd out how to eventually combine the estimates that 

come from the L different strata so that estimates for the whole population can be generated. 

 

Post-stratification 

We can also stratify the inventory after an unstratified sample was implemented (e.g. by deriving 

separate estimates for different forest types). This is called post-stratification and can be considered as a 

kind of data grouping for analyses. However, such post-stratified analysis needs to be done carefully, as 

the estimation does not strictly following the sampling design anymore. For example: the data grouping 

for analysis must not be done along with the target variable, by for example, forming three equally wide 

groups (post-strata) of low, medium and high values; such an approach would be entirely mistaken, 



  
Course 3: Introduction to sampling 
 

 

 

 
Text-only version  © FAO 2024 

 

33 

even though it will lead to high (but untrue) precision values! 

Before doing a post-stratified analysis with estimates of precision of estimation, you should consult a 

sampling expert to avoid unnecessary mistakes and mistaken inferences and conclusions: all estimators 

that are recommended in textbooks for post-stratified analyses come with some assumptions that need 

to be observed. 

Two-phase or double sampling 

In double sampling, a new feature is introduced—the use of ancillary variables, also known as auxiliary 

variables or co-variables. In order to increase the precision of estimation of the target variable, it is 

essential to understand the correlation between the target and ancillary variables. The idea is to collect 

a relatively large—but low cost—first phase sample to obtain information of such ancillary variables, 

such as through remote sensing. 

Then, in the second phase, a smaller sample is selected where both the target and the ancillary variable 

are observed. This usually incurs a much higher cost per plot—let us understand this better with an 

example. When estimating forest biomass, it is possible to use a first phase estimation of the ancillary 

variable from remote sensing imagery and determine a vegetation index around many sample points. 

This is fast and cheap and can also be automatically done. 

Then, in the second phase, a much lower sample size of sample plots is installed in the field where 

measurements are taken and plot biomass estimated. This is far more expensive than a sample in the 

first phase. For all field plots, not only the target variable (biomass, in this example) is determined, but 

also the ancillary variable (vegetation index, in this example) from the remote sensing data is observed. 

The second phase data pairs of target and ancillary variable are then used to establish a model between 

target and ancillary variable, from which the estimates can be produced. The most common models 

used here are the simple ratio between both variables or a regression model. This would lead then to 

double sampling with the ratio estimator and double sampling with the regression estimator, 

respectively. 
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Phase 1  Phase2 

  

 

 

It might have become clear by now, that the higher the positive correlation between the two variables, 

the more efficient the estimator will be in terms of precision. That is, for an efficient ancillary variable, 

we always search for a variable that is highly positively correlated to the target variable. At the end, this 

is, of course, also a cost consideration, because the introduction of a first phase also increases the cost 

of the inventory. 

In the next lesson on estimation design, you will see how this eventually improves the precision of 

estimating the target variable. 

Double sampling is a very efficient way of seizing a (cheap to observe) ancillary variable to improve the 
precision of the estimation of a (more expensive to observe) target variable. 
 

Double sampling for stratification 

Double sampling is also relevant in the context of stratification. There are inventory cases where it is 

known or assumed that stratification may increase precision, but sometimes, it is not possible to clearly 

delineate the stratum boundaries (e.g. in remote sensing imagery), since they are 'fuzzy' or continuous 

transitions rather than strict lines. Besides, such a delineation takes a lot of time and requires robust 

prior knowledge! 

So far, for stratified sampling, we have assumed that the strata will be defined prior to sampling, and we 

therefore also refer to it as pre-stratification. By doing so, we assume that such prior definition of the 

strata is error-free; that is: the size of the strata and their weights in the estimators are not considered a 

source of error. 
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In double sampling for stratification (DSS) or two-phase sampling for stratification, the strata do not 

need to be defined before sampling, but are defined during the sampling process and the strata sizes are 

estimated. 

The two phases in DSS are as follows: a relatively large first phase sample is selected (frequently in 

remote sensing imagery, as this is quite inexpensive) and for each sample point it is determined to which 

stratum it belongs. That is: the ancillary variable that is observed in the first phase is stratum; in NFIs 

this could possibly be forest type. 

In the second phase, a stratified sub-sample of the first-phase plots is selected and these plots are 

visited to observe the—relatively expensive—target variable, which is frequently done in the field. The 

allocation of the total sample size to the strata can be done along the same strategies as with pre-

stratification: uniform, proportional to size, proportional to size and variability, or proportional to size, 

variability and cost. The decision about such an allocation will need to be done from available 

information about the expected variability and cost per plot in the strata that were distinguished. 

Given the same sample sizes in the second phase sample and in normal pre-stratification, DSS will be 

less precise than pre-stratification. The reason is that in DSS the strata sizes are being estimated from 

the first phase sample and such size-estimation carries a sampling error which propagates into the total 

error. This can also be seen with the estimators for DSS, which are not given here but can be found in 

sampling textbooks. 

 

 

Did you know? 

Can we also use a remote sensing classification to separate strata? 

Yes, we can, and it is often done like this. Imagine, for example, a remote sensing-based classification 

in different forest types, for which we expect differences in forest biomass. However, similar to the 

above- mentioned visual interpretation, every classification will have errors. Since the stratum area 

estimates come with errors, we need to account for that additional source of uncertainty in the 

estimator! 
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Quick tips! 

Never “invent” a new sampling or plot design while ignoring the issue of deriving an unbiased 

statistical estimator! The accuracy of an estimator depends on a careful reflection of the selection and 

inclusion process. You can easily run into unsolvable statistical traps by just making small changes on 

the plot or sampling design. 

For example, a simple rule like “extend the sample plot if a certain condition is fulfilled” can lead to 

unexpected statistical problems (the resulting inclusion of probabilities of trees cannot be calculated 

easily)! Other rules, such as shift plots that overlap the forest boundary completely into the forest 

are violating the definition of the population. They are simply wrong and might lead to biased 

estimates. 

 

Plot or observation design 

The sampling design outlines how sample points are selected, while the plot design outlines how the 

trees to be sampled are chosen around the selected point. The question is, which objects (e.g. trees) 

should be included at each sampling location around the sample point? 

As in practically all design/planning steps for an NFI, while optimizing or adapting the plot design to the 

specific forest conditions, one needs to carefully think about how to allocate the limited resources (time, 

budget and personnel) in the most efficient way. Efficiency can be seen as the relation between costs 

and resulting precision of estimates. If the resources are not sufficiently considered, this may 

compromise the sustainability of a permanent NFI. 

Capturing variability as a major goal in plot-design planning 

From a purely statistical point of view in plot design optimization, we aim at capturing a maximum of 

variability within each single plot. The rationale behind this is that we then make the variability 

between the plot small. And that translates into a narrow distribution of plot observations around the 

estimated mean (compare Lesson 1 of this course), which means: higher precision of estimation. 
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A relevant concept in this context is called spatial autocorrelation, which we also observe in forest 

populations—this means that objects—in this case, plots—that are closer together tend to have higher 

correlated observations. 

High correlation means that from knowing the value of the first object one may quite well predict the 

value of the second object at a given spatial distance. If that is the case, the measurement of the second 

observation is not very efficient as it does not bring much of additional information; it may even be a 

waste of money. 

Considering the relevance of spatial autocorrelation in inventory design planning leads to some 

conclusions regarding plot design, as well as sampling design: 

ü It is good to have a certain distance between sample plots. Sample plots that are spatially close 

together are not efficient. 

ü It is good to have a plot design that covers a larger area so that within-plot observations exhibit 

lesser autocorrelation: 

a) Therefore, given the same area, elongated strip plots are statistically more efficient than circular 

or square plots; and 

b) Another option to raise efficiency for a given plot area is to subdivide the plot into spatially 

disjointed sub-plots at a certain distance from each other: this is what we call “cluster-plots”. 

With these two options, please remember that not only statistical but also cost considerations are 

relevant. The per-plot cost will be higher for elongated strip plots or cluster plots as compared to a 

compact plot shape of the same area: therefore, in practice, these optimization considerations need 

always to balance statistical and cost criteria. 

Typically, this spatial correlation drops after 50-200m (depending on forest type and management). 

Fixed area and nested sample plots 

The most basic plot design is the fixed area plot. The shape and size of these fixed area plots might be 

different according to the specific inventory purpose and forest conditions. In general, circular plots are 

more common than rectangular ones in forest monitoring, while in ecological surveys the square shape 

is more common—and sometimes the term 'quadrat' is used in ecological surveys instead of 'plot'. 
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From a theoretical point of view, any plot shape is admissible; yet it is crucial to carefully consider the 

inventory purpose and forest conditions when selecting the appropriate plot design, and to balance the 

cost and practical considerations with the need for accurate data collection. 

Note 

The plot (or tree) expansion factor 
 
Many variables of interest are area-related, such as 'number of trees per hectare'. This means that, 

for example, when one doubles the area of one plot, the number of trees found is also expected to 

double on average. 

 
In order to expand or upscale the observation to the typical reporting unit of one hectare, such area- 

related, per-plot observations need to be multiplied with an expansion factor resulting from the 

relation 1 ha/plot area. 

 
Area-related variables are commonly those associated with quantitative direct measurements, such 

as volume, biomass, number of trees or regeneration density. 

 

Trees of different diameter classes normally appear with different densities (in natural forests, for 

example, there are many more small trees than large trees). Large trees carry much of the forests 

biomass, but they are low in number. If we then use a relatively large plot to be sure that on average we 

have some large trees within the plot area, we would need to measure a huge number of small trees. 

That is: one single plot area is, therefore, usually not efficient. 

A common solution here is to use a so-called nested plot design, in which sub-plots of different sizes 

are nested, so that trees of different size class are being observed on different sub-plot areas. Here it is 

important to stick to a strict terminology in order to avoid confusions: the whole thing (the combination 

of all sub-plots) is the plot—while the different nested shapes of different size are the sub-plots. 

The nested sub-plots are not assessed one after the other, but we check (in one sweep, typically 
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clockwise) for each tree whether it is included or not. They will all end up in the same data table. 

Note 

Accounting for unequal probabilities 

The inclusion probability in a forest inventory is the probability that a tree is included in a sample. 

Because effectively the sampling units are plots, based on areas, this probability is in effect the 

inverse of the expansion factor. 

Hence, a design with sub-plots will lead to unequal inclusion probabilities, and we need to reflect this 

in the estimation design: the plot expansion factor will be larger for the smaller plots, where the smaller 

trees are observed! 

Since sub-plots have different sizes and areas, trees will have different expansion factors according to 

the sub-plot where they were tallied. We therefore need to calculate the correct expansion factor for 

each tree individually, based on its dbh or its affiliation to a subplot and its corresponding area. 

Expansion factors standardize then all the areas to a single per-hectare basis. 

 

The video ‘How to assess (nested) fixed area forest inventory plots‘ explains how to establish and 

assess nested fixed area sample plots in the field: https://www.youtube.com/watch?v=IA-

PflXW9_k&t=2s 

Slope correction 

The area to which all observations and estimates refer is the map area, or the horizontal projection of 

the terrain into the map plane. Whenever it is not possible to directly measure horizontal distances 

when measuring the plot (by using modern electronic instruments), and distances are measured along 

the slope, the horizontal projection area of this plot is smaller than the intended plot area and the 

distances measured from the plot center to the trees are larger than the projected horizontal distances 

(except we measure exactly along the contour lines). 

To ensure an equal plot area in the horizontal map plane, which is a prerequisite to derive unbiased area 

https://www.youtube.com/watch?v=IA-PflXW9_k&t=2s
https://www.youtube.com/watch?v=IA-PflXW9_k&t=2s
https://www.youtube.com/watch?v=IA-PflXW9_k&t=2s
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related estimates, the oblique plot area that constitutes the plot in the field needs to be enlarged 

depending on the slope angle. 

When using circular fixed area plots, they become ellipses when projected into the slope. To establish 

these plots on the slope there are essentially two options: 

1. Either a electronic distance meter is used that directly measures horizontal distance: then, 

automatically the right trees within the defined horizontal distance (radius) are included. An 

elliptical plot is established without the need to specifically lay it out. 

2. Or—which is the traditional approach—one calculates the (larger) are of the slope-projected 

ellipse and establishes at the slope a circle with exactly that area. To do so, one needs to slope-

correct the nominal plot radius in the horizontal plane with the factor below to obtain the larger 

radius of the circle that will be laid out at the slope. 

1 

cos α 
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Video resource 

How to correct for slope and how to deal with plots at the forest boundary 

https://www.youtube.com/watch?v=InPERYNxQ0E&t=1s 

 

In case that such slope correction was omitted during plot establishment, the observations obtained 

from this plot may be corrected afterwards (since plots have unequal sizes in the horizontal projection 

depending on slope). Since the actual horizontal area is then smaller than intended, the result would 

need to be multiplied with the correction factor 1/cos α. However, slope angle needs to have been 

measured; otherwise, a correction is not possible. 

In most NFIs, slope correction is usually considered for slope angles > 10 percent, which is one of those 

conventions with which forest inventories work in practice Also, in the presence of gentle slopes of < 10 

percent, distance measurements can often be taken horizontally by manual leveling. 

Note 

Slope correction applies to any plot design and must always be considered in advance, the corrections 

are quite simple for circular fixed area plots. The same principles of slope correction do, of course, 

also apply to square and rectangular plots. 

And for these two plot shapes the slope correction is more laborious: for square plots, the corners of 

a larger effective plot area need to be marked on the slope so that the projected plot area 

corresponds to the nominal area. For elongated rectangular plots we usually walk along the central 

line and measure trees to the right and left in a defined distance: here, both directions of the plot 

need to be slope corrected: the long line along wish we walk and the measurements to the right and 

left. 

 

https://cdn.embedly.com/widgets/media.html?src=https%3A%2F%2Fwww.youtube.com%2Fembed%2FInPERYNxQ0E%3Ffeature%3Doembed&amp;display_name=YouTube&amp;url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DInPERYNxQ0E&amp;image=https%3A%2F%2Fi.ytimg.com%2Fvi%2FInPERYNxQ0E%2Fhqdefault.jpg&amp;key=40cb30655a7f4a46adaaf18efb05db21&amp;type=text%2Fhtml&amp;schema=youtube
https://www.youtube.com/watch?v=InPERYNxQ0E&t=1s
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Sampling with cluster plots 

In NFIs, locating and travelling to the sampling locations is a major cost factor, particularly when the 

road network is poor. The sampling grid is usually sparse and the distances between plots are large. This 

is why we want to assess as much information as possible once the team is out on a plot location. This 

calls for large plots. 

However, we learned that—because of spatial autocorrelation—it is good to have observations in some 

spatial distance to each other, so that, instead of establishing one large plot per sample point, NFIs 

usually opt in favor of establishing so-called cluster plots: the individual large plots are subdivided into 

sub-plots each that are laid out at some spatial distance. 

What is resulting are subplots that are arranged at some geometric pattern (for example corners of a 

square or an L-shape). The set of sub-plots forms the plot and it is good to not confuse plots and sub-

plots. Plots are the core sampling elements and the number of plots corresponds to the sample site; not 

the number of sub-plots. 

The spatial distribution and distance between the subplots are arranged such that a cluster plot can 

“capture” much more variability compared to a single compact plot of the same area size. For planning a 

cluster plot design, we need to decide certain characteristics: 

1. The number of subplots per cluster; 

2. The distance among the subplots; 

3. Size and shape of subplots; and 

4. The spatial arrangement of subplots. 

Some considerations about (sub-) plot shape and size 

We have already concluded that each single sample plot should capture as much variability as possible 

in order to increase overall precision of estimation. If we had an unlimited number of resources at our 

disposal, the same number of larger plots would always be better than the same number of smaller 

plots. 

On the other hand, under limited resources, we need to decide whether to use a larger number of 

smaller plots or a smaller number of larger plots. Increasing plot size involves increasing marginal 
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precision costs for every additional tree measured, while increasing the number of plots implies smaller 

and smaller gains in precision in exchange of added walking time in between plots. However, from a 

certain plot size onwards, the effect of an increased sample size on precision will be more important 

than increasing plot size! 

 

 

Did you know? 

Plot size and statistical efficiency. 

The marginal information gain we could expect from measuring one additional tree per plot is 

decreasing with every new tree. Imagine we have already measured 99 trees on a sample plot, would 

you expect that we learn something new from measuring the 100th tree? Probably not, because it will 

only add redundant information. 

On the other hand, the assessment costs on the plot will increase linearly with each additional unit of 

observed area (or number of trees). But where should we draw the line? 

Experience and empirical studies both suggest that assessing more than 15-20 trees per (sub-) plot is 

not efficient anymore. It is then better to invest the resources in increasing sample size instead 

(better more small plots than fewer large plots)! 

 
 

There are several practical and statistical arguments dictating the shape of plots (or subplots), and 

traditions and common standards in different areas of the world must also be considered. The following 

general guidance applies on the same plot/subplot areas of different shapes: 
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Circular sample plots are: Long rectangular plots: 

 

 

• easy to implement – practically 

everything can be measured from the 

centre;  

• relatively easy regarding slope 

correction; but  

• very compact and likely to capture less 

variability. 

• need more work in plot marking (e.g. by marking 

with a tape the central transect and walking along 

it); 

• have, on average, more border trees to be checked; 

• intersect, on average, more often with boundaries 

between forest types and need more consideration 

of border corrections; 

• are more time-consuming for slope correction; will 

likely capture more variability; and 

• are good when visibility is low (understorey is too 

dense), as only short distances to the right and left 

of the central line can be observed. 

 

On the number of subplots per cluster 

Clustering of subplots into one joint observation will always be less efficient than selecting the same 

number of sub-plots as independently selected plots over the whole inventory region. Sampling with 

cluster-plots is a compromise used to reduce travelling costs and observe larger plot areas at every 

single sampling location, while reducing redundancy caused by spatial autocorrelation by distributing 

the subplots spatially. 
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Therefore, the same arguments hold as for the design planning of single plots: increasing the observed 

area means increasing costs, while the standard error will be reduced down to a certain limit, beyond 

which there is barely any further reduction. 

Thus, investing more and more time and effort into one single plot has, from a certain point onwards, no 

significant effect on precision. Usually, there is no strong effect on precision after a number of 3-5 

subplots (depending on spatial variability), and measurement of more plots per cluster becomes 

inefficient. 

Reality check 

Feasibility as a guiding argument 

We can derive a lot of statistical considerations from sample and plot size, but in the end, the most 

important argument is feasibility. In most cases, we are forced to look at the available resources and 

make the best out of them. 

For planning purposes, it would be beneficial if, on average, a whole cluster plot could be measured 

by a single field team in one day. This will affect the number of subplots that are feasible and their 

size, considering relatively small subplots (in many forest inventories statistical considerations lead to 

plot sizes that include around 15-20 trees in average). 

It is a common situation in NFIs that much time is needed to reach the sample point and to walk from 

subplot to subplot. We may consider these walking times as inefficient with respect to measuring our 

target variables: frequently the larger part of the time in the field is used for such inefficient walking, 

Then, one can easily imagine that more than 4-5 subplots will in many cases already become a 

challenge in terms of time consumption. 
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Summary 

Before we conclude, here are the key learning points of this lesson. 

• The planning of any sampling study can be broken down into three basic technical design 

elements - sampling design, observation/plot design and estimation design. 

• One of the aspects defined in the sampling design is the number of sampling elements (plots) 

that should be observed. 

• A forest inventory should usually be optimized towards one single target variable (for which the 

precision should be maximized for the given resources). Usually the stand basal area, which is 

highly correlated to volume and biomass is used as the target variable. 

• In forest inventories, the sampling design defines how the samples are selected from the 

population and what the sample size is. 

• Stratification means “subdividing” the total population (forest area) into more homogeneous 

sub-populations that we call “strata” (singular “stratum”). 

• The plot design defines what is being done at each sample point; it does also define the rules 

how to include the sample trees that will be observed. 
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Lesson 3: Estimation design 

Lesson introduction 

In this lesson we will look into estimation design, which consists of the methods and formulae we apply 

to derive unbiased estimates from the data collected from a sampling design and a plot design. 

 
Learning objectives 

At the end of the lesson, you will be able to: 

1. Describe the basic estimators for common sampling approaches. 

2. Explain the importance of applying the correct estimator. 

Estimation design 

Let’s begin this lesson by looking at some typical estimation designs. Some of these alternatives are 

specific to the sampling design used, and others can be applied based on different sampling designs. 

In some cases, we also have the freedom to apply different estimators to data collected under a given 

sampling design. For example, we can include ancillary data with a ratio estimator (discussed in later 

sections of this lesson). We might also derive an estimate without considering the ancillary variable if it 

doesn't help to produce a more precise estimate. 

It is then up to the data analyst to decide which estimator to use. If multiple alternative estimates can 

be produced, the choice is usually the estimation design that leads to the higher precision (which is 

equivalent to “smaller standard error of the estimates”). 

 

Design-based, model-assisted and model-based inference 

In Lesson 1, we looked at the term 'inference'. Sometimes, the terms inference and estimation are used 

interchangeably, because each estimation means making inferences about true population values. Some 

inventory experts, therefore, prefer to talk in general about inference when they refer to estimation, 

because inference implies more than only estimation: it also refers to the purpose of estimation. Let us 

now look at the three inferential paradigms: design-based, model-based and model- assisted inference. 
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Design-based  
inference 

Model-based 
inference 

Model-assisted inference  

We make no 
assumptions about the 
(spatial) structure of the 
population. We assume 
this structure as 
unknown, and aim at 
estimating 
characteristics of this 
flexed population. 
 
Unbiasedness is 
guaranteed from the 
sampling- and plot 
design exclusively i.e. 
from randomization. 

The population is seen as a 
realization of a stochastic 
process, and assumptions 
about the underlying process 
or model can be considered 
during the estimation. 
 
The assumption is that we 
are looking at only one out of 
many possible populations 
(that make up a 
superpopulation). Since no 
model can describe this 
population perfectly, 
uncertainty will remain even 
after a full census, and comes 
from the ‘quality’ of the 
model used – not from the 
sampling design.  

A model is used in support of 
design-based estimation, 
lying somewhere between 
design-based inference and 
model-based inference. 
 
This means that even if the 
model was not well-specified, 
this will not introduce bias, 
but will affect the precision of 
the estimation. Examples are 
the ratio and regression 
estimator that make use of 
simple models during 
estimation by establishing a 
relationship between an 
ancillary and the target 
variable. 

 
Population 
assumptions 

The validity of estimates 
(unbiasedness) depends 
exclusively on the 
sampling design 
(selection of sample 
plots, randomization). 

The validity of the estimate 
depends entirely on the 
validity of the model 

Field observations of the 
target variable plus auxiliary 
variables for the plots are 
considered. 

Validity of 
estimates 

Remote sensing or 
auxiliary data is not 
integrated in the 
estimation phase, but 
maybe in the planning 
phase, for example for 
stratification. Estimates 
are produced from plot 
observations of target 
variables alone. 

Field observations are used 
to establish a relationship 
(model) to ancillary variables 
which are usually remotely 
sensed indices. Then the 
model is used to predict the 
target variable from a wall-
to-wall coverage of these 
indices. 

Validity of estimates depends 
on the sampling design – but 
precision of estimation can 
be increased by integrating 
the additional information 
that comes from the ancillary 
variable. 

 

 Example: For every pixel of a 
satellite image a model 
predicts biomass/ha, the 
statistics are later derived as 
aggregate of the pixel 
values.  

Example: Instead of 
estimating biomass directly, a 
ratio between biomass and 
e.g. NDVI is estimated, where 
the NDVI values serve as 
ancillary variable and are 
available for the whole forest 
area (population).  

 



  
Course 3: Introduction to sampling 
 

 

 

 
Text-only version  © FAO 2024 

 

49 

Estimation with cluster plots 

Contrary to many textbooks on sampling, we do not refer to cluster sampling as a sampling design of its 

own, but to sampling with cluster plots, that is, we look at it as a plot design, since this is more 

consistent with the terminology we use for plot designs. 

However, the meaning of both is the same: a single sampling element consists of several sub-elements, 

which are selected jointly in a single randomization step. Since subplots in a cluster plot are not selected 

independently from each other, sample size refers to the number of selected clusters and not to the 

number of subplots. The cluster plot can be considered as a single 'funny-shaped' plot where the funny 

shape comes from the spatially disjointed arrangement of the plot. 

For simple random sampling of cluster plots: when the sub-plot observations are aggregated at the 

cluster level = plot level (only one value, either a mean or total per cluster), the subsequent estimation 

can follow the same estimators as introduced in lesson 1 (simple random sampling: SRS). However, it 

often happens that we need to consider clusters of different sizes (= different numbers of subplots), 

since not always all subplots are inside the target population. Then the ratio estimator would be a 

choice, using the size of the cluster (the number of sub-plots) as an ancillary variable. 

It may, however, also be of interest to do an analysis per subplot within the clusters; this will not change 

anything regarding the results of point and interval estimate, but it allows additional analyses of the 

spatial structure of the forests and of the efficiency of the cluster plot design. 

 

 

 

Show me the math 

Estimation with cluster plots 

Clusters may have an equal or unequal number of sub-plots (m) for all clusters. In this section, we 

present the estimator only for the situation of cluster-plots with equal number under random 

sampling. For clusters with unequal sizes, cluster reweighting is required. The estimated mean per 

sub-plot can then be calculated from the estimated mean per cluster and the mean number of sub-
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plots per cluster as follows: 

 

 

and the estimated error variance of the mean per sub-plot is: 

 

 

Where yi are observations per subplot. The estimated variance per cluster can be derived by 

calculating the variance over the per-cluster-observations with the known estimator for SRS: 

 

 

The estimated total results, as usual, come from multiplying the mean with the total. In cluster 

sampling, one may take the cluster mean and the number of clusters (N), or the mean per sub-plot 

and the number of sub-plots (M): 

 

And the respective error variance for the total can be derived as: 

 

 

Efficiency of sampling with cluster plots—Intra-cluster correlation 

The similarity of observations within a cluster can be quantified by means of the Intra-cluster 

Correlation Coefficient (ICC), sometimes referred to as the Intraclass Correlation Coefficient. The higher 

this correlation is, the more redundant the observations are from different sub-plots and the 

information gain becomes smaller. 

Such an analysis is very instructive when it comes to understanding and analyzing the performance of 

cluster sampling for populations with different spatial autocorrelation structure, as this is directly 

mirrored in the intra-cluster correlation coefficient. When the ICC is high, one may consider making the 

distances between sub-plots larger (which increases the walking time and costs, of course) or to reduce 
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the number of sub-plots. 

However, one should consider that ICCs can be different for different variables and an optimal cluster- 

design for one variable is not necessary equally optimal for another. It is common practice to use basal 

area as a guiding variable in these optimizations, because it correlates well to various other tree 

variables (e.g. biomass). 

For cluster plots consisting of several sub-plots, it turns out that if: 

Ü ICC = 0 (observations uncorrelated), there is no difference in the performance of cluster sampling of 

n clusters and SRS with n*m subplots. We aim at keeping ICC low. But getting ICC close to zero is 

impossible in practice, as the distance between the sub-plots would turn out to be too long. 

Ü ICC < 0 (negative correlation between subplots), sampling with n cluster plots would be more 

efficient than with n*m independently selected sub-plots. This situation is very unlikely in forest 

inventories (because of spatial autocorrelation). 

Ü ICC > 0 (some redundancy inside the clusters) is the most typical case. Sampling with cluster plots is 

less efficient than independent selection of single plots. 

However, if inventory costs are included, the overall efficiency is likely higher because of reduced travel. 
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Stratified sampling 

You have learned that stratification aims at subdividing the total population into more homogeneous 

sub- populations, in which independent sampling studies are implemented. When combining the single 

estimates from different strata we need to remember that these strata have different sizes. Therefore, 

we need to weigh all stratum estimates with the respective relative sizes of the strata. In forest 

monitoring, stratum size is usually given in terms of area, and the sum of all strata weights would be 1 

(i.e. equal to the total area). 

Stratified sampling is not introducing a new sampling design but what is new is the framework used to 

integrate estimates from different strata into one estimate for the total area. Stratified sampling 

therefore actually introduces a variation of estimation design: combining independent estimates from L 

strata into one single estimate for the total population. 

 

 

Show me the math 

In the following, we use the notation h as an index for a stratum and L for the total number of strata. 

Then, an unbiased mean over multiple strata can be estimated as a weighted sum. The weights here 

are the area proportions of the different strata Nh/N: 

 

 

The estimator for the error variance is: 

 

 

The square root of this error variance is the standard error. 

The total is derived as: 
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And the error variance of the estimated total is:  

 

 

Efficiency of stratified sampling 

Statistical considerations reveal that stratification is the more efficient in increasing precision of 

estimating the mean the more different the strata means are. These positive effects (i.e. better overall 

precision), tend to become smaller with increasing number of strata. 

From a statistical point of view, the formation of more than six strata usually has no significant effect on 

improving the precision of estimation. However, there might be more than just statistical arguments for 

forming the strata. The question is also whether a post-stratification might be more indicated in such 

case. 

Double sampling for stratification 

Double sampling for stratification was already mentioned in Lesson 2. It is a two-phase sampling design 

to estimate the sizes of strata (that cannot be delineated or pre-defined easily). Since the stratum areas 

(and weights) are estimated from the first phase sample, the sampling error of estimating these areas 

needs to be considered when estimating mean and variance for the whole population. 

 

 

Show me the math 

Estimation in double sampling for stratification 
 
Assuming that the stratum weights are estimated from the first phase sample (denoted by the apostrophe) as 

 

 

 

 

And an unbiased mean can be estimated as 
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Ignoring finite population correction and assuming n’ is large, the respective error variance would be 

estimated as 

 

 

This variance estimator looks very similar to the estimator in stratified random sampling – except for 

the last term in the brackets: there, an error component is added that comes from the fact that the 

strata sizes are only estimated and not known 

 

The Collect Earth tool, part of FAO’s Open Foris system, is useful in this context and has been applied 

many times. It was designed to make use of available and georeferenced satellite imagery and aerial 

images from Google Earth, Bing and others, for a visual interpretation of sampling locations or plots. 

With the help of this tool, a high number of points can be visited and visually classified into different 

strata. Later the area size of strata can be estimated as proportion of sample points per stratum. A 

variance of this estimate can be derived and incorporated into the estimation as shown above. 

http://www.openforis.org/tools/collect-earth/
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The ratio estimator—utilizing quantitative ancillary information 

There are situations in forest inventory sampling in which the value of the target variable is known (or 

suspected) to be well correlated to another variable (called a co-variable, ancillary variable or auxiliary 

variable). 

If such an ancillary can be observed on the plot without too much effort and costs (e.g. by remote 

sensing analysis), it will be efficient to also observe it, and utilize the correlation to the target variable to 

eventually improve the precision of estimating the target variable. This is where the ratio estimator is 

applied. 

Note 

Imagine a classification of satellite imagery was done to produce a continuous prediction of crown 

cover percent for a forest area with varying crown density. Assuming a high correlation to plot 

volume or biomass, this would be a case where the ratio estimator is applied. In closed forest areas 

with complete forest cover in all places, this would not make any sense, because there, crown cover 

percent would not vary but be constantly 100 percent, so that the correlation to biomass between the 

ancillary variable crown cover percent and the target variable biomass would be close to zero. 

Instead of estimating standing biomass per unit area from the field plots directly, the ratio estimator 

uses a detour: we estimate a ratio, r, of the two means, which gives us biomass/crown cover percent, 

and in the following, we use the known crown cover to derive an estimate of biomass. Mean biomass 

could then be estimated as r*Mean crown cover percentage. 

 

Another typical case for the ratio estimator is if a certain proportion of large plots (or cluster plots) are 

sloping over beyond the boundaries of the inventory region and are only partly inside the target 

population. In that case, the plot area inside the forest is not identical for all plots, and the ratio 

estimator may be applied, with plot area as an ancillary variable to account for that. In fact, we can then 

assume that the plot area will be highly correlated with the stock variables (including basal area, 

volume, biomass, carbon and number of trees) recorded on the plot area. 



  
Course 3: Introduction to sampling 
 

 

 

 
Text-only version  © FAO 2024 

 

56 

For an estimate of precision, we need to know the parametric value (mean) of the ancillary variable (here, 

mean crown cover percentage over the total forest area, or total forest area to be inventories in the plot- 

size example). 
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Show me the math 

 

Estimation with the ratio estimator 

The parametric ratio between target variable y and ancillary variable x 

 

is estimated based on the sample from 

  

The estimated variance of this estimated ratio is: 

 

The estimated total is derived from: 

 

with an associated error variance of:  

 

Given the estimated ratio, r , the mean of the target variable could be estimated as: 
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This estimated mean carries an estimated variance of:

 

 

 

Show me the math 

Estimation design with the regression estimator 

While the ratio estimator models the relationship between the target and an ancillary variable, the 

regression estimator uses a regression model with both intercept and slope coefficient. Remember: in 

the ration estimator, the intercept is assumed to be zero. The mean is estimated from the regression 

estimator as follows: 

 

The estimated variance of this estimated mean is given with: 
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Ratio vs. regression estimator 

The ratio estimator uses a simple fixed ratio, which means that the target variable, y, will be zero if the 

ancillary variable, x, is zero. However, there are situations where this is not correct. Imagine we can find 

small trees on those plots, for which no crown cover was detected in the remote sensing images (for 

example, due to low spatial resolution). In this case, a regression line with an intercept coefficient which 

is not forced to be zero (as with the ration estimator) would be more appropriate; if, for example, crown 

cover percentage is zero, there might still be considerable biomass on the ground. Here, the regression 

estimator is using a simple linear model. 

In both cases, ratio- or regression estimates, the overall efficiency depends on the correlation between 

target and ancillary variables, which should be highly positive. Sometimes it turns out that this 

correlation is relatively low and that the expectations were too high, after, for example, very expensive 

remote sensing imagery was purchased. 

 

 

 

 

 

 

 

 

Double sampling (Two-phase sampling) 

For the ratio and regression estimator, the parametric mean or the parametric total of the ancillary 

variable needs to be known. If such information is not available, one may estimate these values from a 

sample. 

This is exactly what double sampling is about, also referred to as two-phase sampling: in the first phase 

sample, the ancillary variable is estimated, usually with a large sample of a variable that can be observed 
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relatively easily and inexpensively, and which is known to be highly positively correlated to the target 

variable. 

Then, in the second phase sample, a smaller sample is taken of the target variable, which is frequently a 

variable that is much more expensive or much more difficult to observe. A relationship between a target 

and an ancillary variable can then be established (either a simple ratio or a regression, which would be 

double sampling with the ratio estimator, or the regression estimator, respectively). 

Here, the stronger the positive correlation to the ancillary variable, the smaller the required sample size 

in the second phase, when the more complex/expensive/difficult target variable is observed. 

In the following, we address dependent phases, where the second phase sample is a subset of the first 

phase (and not an independently selected sample). The presented estimators are for SRS exclusively. 

 

Show me the math 

Estimation in double sampling 

For double sampling with the ratio estimator, the mean of y can be estimated as: 

 

With an estimated variance of the estimated mean of: 

 

And for the regression estimator, the mean is estimated as: 
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With an estimated variance of the mean of: 

 

Where ρ is the estimated coefficient of correlation between x and y. 

For both cases, the error variance of the total is calculated, as usual, as: 
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The overall efficiency of double sampling depends on the relation of costs between observing phase 1 

and 2 samples and on the correlation between the two variables. In fact, we strive to exploit the 

ancillary variable as much as possible, to be able to reduce the number of (costly) second phase 

samples. The higher the correlation and the more expensive the observations in the second phase, the 

smaller the phase two sample. 

 

 

Did you know? 

Choosing between alternative estimators 

Depending on the applied sampling design, there might be alternative estimators that could be 

applied. For example, an estimate might be produced on field samples alone, or consider additional 

auxiliary variables. Or a post-stratification may or may not be applied to data. In such situations, 

producing different, valid estimates, with alternative estimators, should result in the same mean, but 

different estimates of precision. In case that multiple unbiased estimators are available, we would 

prefer the one producing the smallest standard error of estimates. 

 

Summary 

Before we conclude, here are the key learning points of this lesson. 

• For design-based inference we make no assumptions about the (spatial) structure of the 

population. We assume this structure as unknown, and we aim at estimating characteristics of 

this fixed population. 

• In model-based inference, field observations are used to establish a relationship (model) to 

ancillary variables which are usually remotely sensed indices. Then the model is used to predict 

the target variable from a wall-to-wall coverage of these indices. 

• In model-assisted inference, a model is used in support of design-based estimation, lying 

somewhere in the middle of design-based inference and model-based inference. 

• When using cluster plots, a single sampling element (plot) consists of several sub- elements 
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(sub-plots), which are selected jointly. Since subplots in a cluster plot are not selected 

independently from each other, sample size refers to the number of selected clusters, not the 

number of subplots. 

• The similarity of observations within a cluster can be quantified by means of the Intra-cluster 

Correlation Coefficient (ICC), also referred to as the Intra-class Correlation Coefficient. 

• Stratified sampling is not a new sampling design, but a framework to integrate independently 

generated sample-based estimates from different strata into one estimate for the total 

population, that is: it is rather a variation of estimation design. 

 


