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This course offers guidance on the typical approaches and calculations used in forest data analyses and 

related topics. 

Who is this course for? 

The course is targeted mainly for those who are involved with analyzing forest monitoring data, but can 

be taken by anyone with an interest in the subject. Specifically, this course targets: 

1. Forest technicians responsible for implementing their country’s NFIs 

2. National forest monitoring teams 

3. Students and researchers, as curriculum material in forestry schools and academic courses 

4. Youth and new generations of foresters 

5. Forest data analysis practitioners 

 

Course structure 

There are four lessons in this course. 

Lesson 1: Introduction to data analysis 

This lesson introduces the issues that are relevant to typical data analysis after data collection and 

cleansing, but also need to be considered during the entire inventory planning and implementation 

process. 

Lesson 2: Estimation 

This lesson offers an overview of the process that generates results (or estimates) from the sample data. 

Remember, however, that this lesson gives only very basic insights – it does not cover the topic of 

statistical estimation exhaustively. If you are an expert who is interested in the subject at a deeper level, 

or deal with NFI data analyses regularly, we recommend that you supplement this lesson with 

textbooks, and/or discuss your approaches with experienced forest inventory statisticians. 

Lesson 3: Statistical models in forest monitoring 

This lesson provides insights into the uses of statistical models and elaborates on issues that need tobe 

considered when using them. 
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Lesson 4: Error in forest monitoring 

This lesson elaborates on the various random errors as they occur along the NFI process. It also 

describes error propagation—how the different error sources propagate to the total error of the final 

result. 

Lesson 5: Typical product from data analyses 

This lesson discusses typical products from data analyses in forest monitoring and elaborates on the 

major products generated from NFI data analysis. 

 

About the series 

This course is the seventh in a series of eight self-paced courses covering various aspects of an NFI. 
Here’s a look at the complete series.  

 
Course 

 
You will learn about 

 
Course 1: Why a national forest 
inventory? 

 
Goals and purpose of an NFI, and how NFIs inform policy- and 
decision-making in the forest sector. 

Course 2: Preparing for a national 
forest inventory 

The planning and work required to set up an efficient 
NFI or a National Forest Monitoring System (NFMS). 

Course 3: Introduction to sampling General aspects of sampling in forest inventories. 

Course 4: Introduction to 
fieldwork 

Considerations for fieldwork, plot-level variables and tree-
level measurements. 

Course 5: Data management in a 
national forest inventory 

Information gathering and data management for NFIs. 

Course 6: Quality assurance 
and quality control in a national 
forest inventory 

QA and QC procedures in forest inventory data 
collection and management. 

? Course 7: Elements in 

data analysis 

 
(You are currently studying this course) 

Course 8: National forest 
inventory results: Reporting and 
dissemination 

 
NFI reporting and the importance of reporting in the 
context of REDD+ actions. 
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Lesson 1: introduction to data analysis 
Lesson introduction 

In this lesson, you will learn about topics that are relevant to typical data analysis—not only after data 

collection and cleansing—but those that need to be considered during the entire inventory planning and 

implementation process. 

Learning objectives 

At the end of this lesson, you will be ale to: 

1. Describe the importance of data analysis in various phases of a forest inventory  

2. Explain the general principles of data analysis. 

3. Describe data cleansing and the considerations associated with it. 

 
Data analysis in the various phases of a forest inventory 

Although data analysis is relevant through the various phases of a forest inventory, the actual analysis 

of the data takes place between data collection and reporting—that is, once the data has been 

recorded, organized and cleaned. The final output of the data analysis is intended to satisfy the 

questions that were raised in the Information Needs Assessment (INA). 

However, data analysis considerations are relevant to the entire inventory process because one of the 

overarching goals of every forest inventory is to generate a relevant and reliable database as input for 

the analyses. In the end, the quality of the data co-determines the quality of the outcomes. 

Let us now look at the role of data analysis during planning and data collection. 

Considerations during the planning phase 

Ü It is necessary to ensure that all variables (that are required to produce the targeted output) are 

part of the inventory protocol. 

Ü Unless it is anticipated that the data might be for future use for potentially emerging issues, it is 

recommended to avoid recording variables that are not needed in the analyses. 

Ü The necessary variables need to be observed and recorded such that precision requirements can 

be met and results generated for the target reference units. 
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Ü The sampling design and plot design need to be defined in ways that ensure that estimators are 

available for statistical analysis. 

Ü Quality assurance protocols for data are necessary. These include: 

• the organization of appropriate training measures for the field teams both before and 

during data collection; 

• the clear and transparent definition of data quality standards; and 

• appropriate control mechanisms. 
 

General principles of data analysis 

Data analyses in forest inventory projects follow the same principles as the whole inventory process - 

they need to be methodologically well-founded, consistent, complete and transparently documented. 

All the steps of analysis need to be justifiable and in line with the inventory design (in terms of sampling 

design, plot design and models used). 

Complying with information needs 

Data analyses need to address all information needs that had been formulated prior to data collection 

and, to the greatest extent possible, issues that might have emerged in the meantime. 

Analyses for future design optimization 

Data analyses may also extend to methodological and practical issues that support the efficient planning 

of follow-up inventories. These could include longitudinal (i.e. time-following) studies, evaluating the 

time consumption in different inventory steps, and/or the evaluation of sampling and plot design with 

the goal of identifying potential optimizations in the implementation of follow-up inventories. 

Double checking all analyses 

When analyzing the data for the targeted outputs, it is important to double-check all results for 

correctness, including intermediate results.  

The corresponding basic principle may be formulated according to Sutherland (1996) “Never believe 

your results”, which means that rather than believing, you need to be sure about and fully understand 

the results and the assumptions underlying them. 
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Any doubts–however minor–need to be followed-up, and this holds true for results that seem 

suspicious,as well as those that appear fully plausible and credible. 

Documentation  

Each analysis step needs to be documented properly in the inventory report, usually as an extra volume. 

In the ideal case, the documentation needs to contain all estimators, step-by-step calculations, 

description of the models, conversion factors and indicator systems used, and needs to address 

challenges in analysis. 

To conclude, remember that the documentation will be aligned with the initial methodology defined 

together with the sampling protocol. 

 

Data cleansing 

Data analyses can only begin if the data is consistent and clean, and if all identifiable errors and 

inconsistencies are eliminated. Eventually, it is data quality that determines the final quality of the 

outputs. 

However, sometimes data errors cannot be identified in the common cleansing process and become 

apparent only when the results don’t look plausible. It is then necessary to revisit the data cleansing 

process to identify potential errors. It is useful to remember here that the lack of plausibility is not 

always an error, and that unexpected variabilities can always occur! 

 

Software considerations for data analysis 

The last decade has seen a rapid development of software solutions—both in general and, more 

specifically, for NFIs. While earlier forest inventories were evaluated by tailor-made programs, whether 

in a programming language or in a statistical software package, currently the trend is to develop R 

scripts and use already existing R packages (libraries of code specialized in conducting particular tasks) 

to the maximum extent possible. 
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Example of R script generated using RStudio, a development environment for R, a programming 

language for statistical computing and graphics 

For smaller inventories (involving smaller data sets) the analyses may also be implemented by 

spreadsheet calculations (such as in Microsoft Excel), R scripts and specific software such as those 

developed by FAO. Skilled programmers are needed for these tasks, who can work collaboratively with 

inventory experts, who define the targeted outputs. 

Single analysis steps or whole workflows can also be solved by implementing the statistical estimators in 

a suitable data model using modern Business Intelligence (BI) software or processed even directly in a 

database management system. 

 

 

Did you know? 

The role of BI software in forest data analysis 

Most standard BI software does not cover the right estimators to be applied when producing results. 

Hence, if BI software is to be used, these estimators must be properly included as formulae. Until 

now, however, this has not been common in most countries. The German NFI currently calculates all 

estimates using SQL Server syntax directly on the database. 
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In any case, there is no one-size-fits-all software—but only specific procedures that can be implemented 

for every forest inventory that reflect the inventory design exactly. As each inventory requires new (or at 

least adapted) complex software, careful checks are required to ensure that the results are correct. It is 

a good idea to ask two different data analysts to do the same analyses independently, and then 

compare the results. 

In some cases, these results may look good, plausible and consistent, and meet the expectations of the 

inventory experts, but will still be flawed. Remember that all results need to be double checked. 

 
Summary 

Before we conclude, here are the key learning points of this lesson. 

• While data analysis considerations are relevant to the entire inventory process, the actual 

analysis of the data takes place after data collection and is a prerequisite for reporting. 

• Data analyses in forest inventory projects follow the same principles as the whole inventory 

process—they need to be methodologically well-founded, consistent, complete and 

transparently documented. 

• Sometimes data errors cannot be identified in the common cleansing process and become 

apparent only when the results don’t look plausible. This entails going back to the data cleansing 

process to identify potential errors. 

• While earlier forest inventories were evaluated by tailor made programs, the trend today (2023) 

is to develop R scripts and use already existing R packages (libraries of code specialized in 

conducting particular tasks) to the maximum extent possible. 

• There is no one-size-fits-all software, but only specific procedures that can be implemented for 

every forest inventory that reflect the inventory design exactly. 
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Lesson 2: Estimation 
Lesson introduction  

Field data collection (and some remote sensing-based analysis) depends heavily on statistical sampling. 

Estimation is the process that generates results (or estimates) from sample data. As such, estimation is 

fundamental in data analyses. 

Depending on the sampling design and the plot design used, estimation can be simple and also very 

complex. This lesson offers only an introduction to sample-based estimation—if you are interested to 

know about it in depth, please consult textbooks or discuss with forest inventory technicians. 

More details on this subject are available in Course 3: Introduction to sampling. 

Learning objectives 

At the end of this lesson, you will be ale to: 

1. Describe the role of estimates in NFI data analyses. 

2. List some general principles of statistical estimation. 

3. Explain point and interval estimates. 

4. Discuss the role of auxiliary data in forest inventory estimation. 

 

General observations on estimates 

NFIs make use of various data sources—from sample-based field monitoring (that is at the core of forest 

monitoring), to the ever-advancing remote sensing technology. 

All products of NFI data analyses are, therefore, estimates—and stem from either: 

1. observations of the target variables on the field sample plots (the so- called design-based 

estimates); or 

2. supported by auxiliary data (commonly from GIS or remote sensing; this is then called model-

assisted estimates; see Lesson 3 of this course for a complete explanation); or 

3. entirely based on models (model-based estimates). 
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Note 

Remember that all results from sampling studies are estimates, be it means or variances, or confidence 

intervals, regressions and correlations. It is therefore better to use clear terminology For example, 

rather than concluding The NFI analysis showed that the forest cover in the country is 43.5 percent it is 

more accurate to say, The NFI estimates the forest cover in the country to be 43.5 percent. 

 

Estimates are random variables. This indicates that they are contrary to fixed parametric values in the 

population, which are constants. All estimates follow a distribution with a mean value of that 

distribution (the expected value for which the point estimate is the sample-based approximation out of 

that distribution) and a standard deviation that describes the variability in that distribution of estimated 

mean values (estimated by the interval estimate). 

In the hypothetical case of repeating an NFI with exactly the same design but different randomization, 

one would produce different numerical results of the estimations, for both the point and interval 

estimates. 

Estimates serve to learn about the population so that the major interest is not so much in the sample 

data itself, but in the inference to the true population value that the sample offers. The smaller the 

standard error is, the closer one can assume that the estimates are—on average—to the true 

parametric value. In that case, one will perceive the estimate as reliable. 

Because we infer from the (estimated) sample to the (true) population value, the terms design- based 

estimates, model-assisted estimates and model-based estimates are frequently also named design-

based inference, model-assisted inference and model-based inference. 

General principles in statistical estimation 

When doing estimation on statistical grounds (as opposed subjective assessments) the calculations need 

to strictly correspond to the sampling and plot design used—which means that different experts will 

tend to come up with the same result. The formulas used for estimation are the estimators. There are 

cases in which more than one alternative estimator is available, but usually there is no choice. 
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A major characteristic of inventory sampling designs in NFIs is that the estimators used need to be 

unbiased (or at least approximately unbiased as in the case of the ratio estimator). That means that the 

expected value of our sampling design should be identical with the searched population value. Expected 

value is the value that results as a mean in the (hypothetical) case that we repeated our sampling study 

many times—under the same design but with different randomization. 

The designs and estimators that we have presented in other courses of this series (most notably Course 

3: Introduction to sampling) are almost all unbiased, with three notable exceptions: 

1. The ratio estimator is approximately unbiased under some circumstances; 

2. There is no unbiased estimator for the error variance in systematic sampling, while there are 

unbiased estimators for the mean; and 

3. There is no unbiased approach to analyze sample plots that include the k nearest trees (not 

covered in this course but explained in specialized textbooks)—a plot design often used in 

ecological studies but not so in forest inventory. 

Should one of these design elements be used in an inventory, the issues that arise from using these 

biased estimators should be transparently addressed. This is particularly important for systematic 

sampling because it is the most frequently used sampling design in NFIs. There, however, we are on the 

safe side when applying the estimator framework of simple random sampling (SRS) for the estimation of 

the error variance, because we know that such an approach yields a conservative estimate and always 

overestimates the true error variance (even though to an unknown extent). 

 
Point and interval estimates: generating estimates on location and dispersion 

When analyzing NFI data, we are mainly interested in point and interval estimates. In this section, we 

will focus on these. 

The point estimate informs about the point on the number axis where the estimate lies (e.g. for above 

ground biomass on an area basis, e.g. 200 Mg/ha), and the interval estimate informs about the 

estimated variability of this point estimate (e.g. SE% = 5%). Using the terminology of descriptive 

statistics, we may also say: the point estimate is a measure of location of the estimate, while the 

interval estimate is a measure of dispersion of the estimates. 

When referring to point estimates, it is often the mean value, but also the estimate of a regression 
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coefficient (b1) or of a correlation coefficient (r), r, or of the population variance (s²) that are point 

estimates. 

Point estimates deliver the core information for data users. Mostly, non-experts focus their 

interpretation on the results on these measures of location of the estimates. It is important to reiterate 

that these point estimates are not the truth, but only estimates. 

The fact that any point estimate will not be identical to the desired true population parameter, is not an 

expression of bias but an expression of the variability in sampling, or the sampling error. However, it 

remains unknown how far this particular estimate (derived from our one sampling study, or NFI) is, in 

numerical terms, from the true population parameter. 

Distribution of point estimates 

To allow such probabilistic inference on the true population value, one must know the distribution of 

the point estimates. For example, for mean values, it is known that they follow the t- distribution for 

small samples and the normal distribution for larger samples; where large, in statistics, is usually defined 

as n≥30 (for large n, the t-distribution approximates the normal distribution). 

When we know that the estimated means vary according to the normal distribution around the 

expected value (the true mean in case of an unbiased estimator), one can use the probability densities 

under this normal distribution to estimate the probability that such true value is within a defined 

interval around the estimated mean that comes from our sampling study (NFI). 

For the estimated mean, such an interval is symmetric around the estimated mean and has a standard 

deviation that corresponds to the standard error. Here, we need to be aware that the standard error is 

calculated from the estimated population variance, s²/y. 

This estimated population variance is an estimate by itself (the sample estimate of the population 

variance): it can be considered a point estimate (the value of the estimated population variance) that 

carries along an interval estimate (the variability of the population variances). One could also estimate 

the confidence intervals for the estimated population variance and for estimated variances, the 

confidence interval will be asymmetric, as estimated variances follow the (asymmetric) F distribution. 
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Interval estimates are also relevant in NFIs because they are a measure of precision of estimation and, 

therefore, uncertainty, which in turn is commonly interpreted as a measure of reliability of the 

estimates. 

Bootstrapping and jack-knifing for interval estimates in complex design 

In some inventory designs where an estimator is overly complex, re-sampling is indicated. Re- sampling 

is a simulation in which sample data is further exploited to simulate many samples (sub- samples) and 

inferences are made from the corresponding results to the statistics of the whole sampling study. 

Bootstrapping is the most commonly used technique when confidence intervals are determined in 

complex designs where unbiased, direct estimators are not available. It goes back to 1979, when Bradley 

Efron coined and introduced this as a modification of the jack-knifing technique that had long before 

been introduced by Quenouille (1956), the so-called 'leave one out re- sampling'. 

These techniques are based on simulations and not on assumptions about the parameters of a specific 

distribution of the estimates; they are, therefore, also called non-parametric techniques. 

The idea of bootstrapping follows the above addressed idea of re-sampling from the sample of size n 

that had been taken. One can either do this 'with or without replacement'. 

Bootstrapping 'without replacement' means that a large number of times a sub-sample of size n is taken 

out of the original sample of size, and those which have been selected are not placed back into the pool 

to be selected from (in other words, they can only be selected once). 

Bootstrapping 'with replacement', however, means that the same observation may be selected several 

times into the bootstrap sample. Here the terminology large means that this sampling is repeated 

several thousands of times, say 10 000 times. 
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For each one of these bootstrap samples the target statistic (e.g. the mean value) is calculated so that at 

the end there are, say, 10 000 bootstrapped mean values and these can be graphed as a distribution. 

This distribution has a mean value (which corresponds, of course, to the mean value of the original 

sample of size n) and a particular probability density distribution from which, for any probability, 

confidence intervals can be derived. 

If, for example, the bounds of a 95 percent confidence interval shall be calculated, one searches the cut 

points where 2.5 percent of the bootstrapped means are truncated at the upper end and 2.5 percent at 

the lower end. The two 'cut points' are then taken as the bootstrapped upper and lower bounds of the 

95 percent confidence interval. 

 

Auxiliary data in forest inventory estimation 

Auxiliary data comes from the observation of auxiliary variables in some inventory designs to improve 

precision of estimation of target variables. Auxiliary variables are sometimes called co- variables or 

ancillary variables (Latin: auxilium=help, ancilla=servant). We have seen auxiliary variables so far in the 

ratio and regression estimators where we seized a high correlation between target and auxiliary 

variables to extract and integrate information from the auxiliary variable into the estimation of the 

target variable. 

In a more general sense, when making a distinction only between target and ancillary variables, we may 

look at various other variables as auxiliary (supporting the analyses). This observation refers, for 

example, to all the topographic variables which serve for breaking down the results of our target 

variables into classes—for example, growing stock per elevation class or biomass per slope class. Here, 
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such auxiliary variables define criteria for a post-stratification, allowing specific analyses and evaluating 

relationships between target and auxiliary variables. 

Let's now look at two figures on improving error estimates through post-stratification with the help of 

auxiliary data. 

 

 

Estimates for different units of reference/sub- populations 

The basic unit of reference for estimation from NFIs is the whole country. Sample size is usually defined 

such that the precision of estimation at country scale meets the expectations. Sample size is usually 

quite large and estimates will be precise, having low standard errors. Depending on the sample size, 

relative standard errors are in some cases less than 1 percent smaller. But such high precision occurs 

only when we have the whole country as unit of reference = reporting area. 
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Often, estimates for sub-national units—such as provinces, states or territories—are also of interest. Of 

course, when using the common systematic grid of sample points, sample size for these smaller units of 

reference will be smaller and standard errors for the corresponding estimates higher. The smaller the 

unit of reference and the smaller the sample size, the less precise the estimates. For example, in the 

German NFI, while the forest area for the whole country carries a relative standard error of SE%=0.7 

percent with a sample size of about n=21 000 clusters, it is SE%=1.6 percent for the Federal State of 

Bavaria (n=2 815) and SE%=25.8 percent for the combined Federal States of Hamburg and Bremen with 

only n=15. 

It is instructive here to consider the simple relationship between sample size and standard error in SRS, 

depicted in the figure below; where the basic shape of the relationship holds for all sampling designs: 

the marginal gain in precision for large sample sizes is small; but small changes in sample size have a 

much larger impact on the standard error for smaller sample sizes! 

 

 When remote sensing data are available, estimates for smaller areas may be generated with much 

higher precision using the so-called small area estimation, where the remote sensing data is used as 

support to generate estimates for (almost) arbitrarily small units of reference. 

Although one can see a definition of small-area estimation in Lesson 5 of this course, we can here 

provide a simple example: Let's say we have a large forest area of 1 000 hectares, and we want to 

estimate the average tree density (number of trees per acre) in a small area of just 10 hectares within 
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the forest. However, we only have data on 5 sample plots within the small area, which is not enough to 

get a precise estimate of the tree density. 

Using small area estimation with remote sensing data, we can use the information from the larger forest 

area to generate a more precise estimate of the tree density in the small area. We can use remote 

sensing data, such as satellite imagery and Light Detection and Ranging (LiDAR), to derive additional 

information about tree density and other forest characteristics in the larger area. 

We can then use this remote sensing data as support to generate an estimate for the small area of 

interest. For example, the remote sensing data might suggest that the average tree density in the larger 

forest area is 400 trees per acre. Using small area estimation, we can adjust this estimate based on the 

data from the small area to obtain a more accurate estimate for the small area. For example, the model 

might estimate that the average tree density in the small area is 450 trees per acre, with a smaller 

margin of error than we could obtain using the sample data alone. 

 

Summary 

Before we conclude, here are the key learning points of this lesson. 

• All results from sampling studies are estimates—be it means or variances, or confidence 

intervals, regressions and correlations. 

• Estimates serve to learn about the population: the major interest is not so much in the sample 

data itself, but in using these sample data for inference to the true population value. 

• When doing estimation on statistical grounds, the calculations need to strictly correspond to the 

sampling and plot design used, which means that different experts should come to the same 

result; and you are not free to do the estimation with any arbitrary approach. 

• In analyzing NFI samples we wish to use design-unbiased estimators, if possible. For some 

designs, such estimators do not exist, including the estimators for the error variance in 

systematic sampling. 

• The point estimate is a measure of location, while the interval estimate is a measure of 

dispersion of a distribution. This terminology holds both for variables and or estimates. 

• In some inventory designs where an estimator is overly complex, a simulation in which sample 



Course 7:  Elements in data analysis t inventory   

 

 
Text-only version                                                                    © FAO 2024 

 
19 

data is further exploited to simulate many samples, that is known as “re-sampling”, may be 

indicated. 

• Under some conditions, it is efficient to also observe auxiliary variables together with the target 

variables in order to improve precision of estimation of target variables.
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Lesson 3: Statistical models in forest monitoring  
Lesson introduction 

This lesson gives an overview and insight into the uses of statistical models in NFIs and elaborates on 

issues that need to be considered when using them. 

Learning objectives 

At the end of this lesson, you will be ale to: 

1. Describe the role of statistical models in forest monitoring. 

2. Identify the major characteristics of statistical models. 

3. Demonstrate how to build a biomass model. 

4. Identify a suitable statistical model for a particular situation. 

5. Explain some common reporting issues in statistical models. 

 

What is a statistical model? 

Statistical models aim to establish a quantitative relationship between a predicted variable and one or 

more predictor variables. In other words, by having measured/observed the predictor variable(s), the 

model is used to generate a value for the predicted variable. 

Essentially, a statistical model predicts a value for a target variable. 

Within the context of forest inventories, statistical models are used when: 

1. a target variable cannot be measured in a forest inventory (e.g. biomass cannot be measured by 

weighing. If you fell all trees in the forest to weigh them, you don't have a forest anymore! 

However, it can be modelled from the measurement of other (so-called) predictor variables); or 

2. a measurement is time-consuming/costly (e.g. height is time-consuming to measure, and it is 

often measured only for a sub-set of trees and then model-predicted for the others as a function 

of dbh). 

Statistical models describe the relationship between data/observations of two variables, frequently 

observed from the same objects (such as trees). Statistical models do not serve to establish a cause-



Course 7:  Elements in data analysis t inventory   

 

 
Text-only version                                                                    © FAO 2024 

 
21 

effect relationship, something which would be the goal of so-called process models: these aim to 

explicitly include the causes behind biological processes in order to predict specific outcomes and 

different situations. While such a relationship may actually exist also for 

statistical models, it is not the subject of the modelling exercise, nor can a statistical model be 

interpreted accordingly. 

Examples of statistical models used in forest monitoring 

There are different types of models—of varying complexity—that are used in forest monitoring, and 

in some cases, it is difficult to notice that a model has been used. 

Example 1: Determining basal area from diameter measurement 

A very basic model, for example, is the assumption that the tree cross section at breast height will 

always be a circle: tree basal area is calculated along the simple circular model. Of course, 

realistically, no tree has a mathematically perfect circle nor whose cross section at breast height is a 

mathematically perfect circle, but the approximation has served reasonably well so far, and there are 

no better solutions. 

Example 2: Conversion factors as statistical models 

Other basic models are simple factors as they are frequently used to convert—for example— stem 

biomass to total biomass or above ground biomass (AGB) to below ground biomass (BGB). Form 

factors—a numerical summary indicator of a trunk's shape—are also simple models, used to 

determine individual tree volume. We may say that such conversion factors are just 'reduced' simple 

linear regression models, where the intercept is zero and the factor itself is the slope coefficient. An 

example is provided in the figure below. 
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A simple conversion factor may be considered a basic model that allows for predicting a variable 

from a predictor variable. The IPCC (2006, Table 4.4), for example, recommends the conversion 

factor of 0.37 for tropical rain forests to determine BGB from AGB. That conversion factor translates 

into a simple linear regression model with an intercept coefficient of zero and a slope coefficient of 

0.37: BGB=0.37*AGB. 

Note that in this case, the IPCC does give a source for this conversion factor but does not publish a 

standard error or other measures of uncertainty. Instead, it specifies, for some forest types, the 

range of values of the conversion factor. 

Of course, considerable uncertainty arises with such simple conversion factors but in many cases, 

such as root biomass, it would hardly be convenient to take your own samples. 

Example 3: Common regression models 

Common regression models such as those used in forest inventories include: 

1. predict height from dbh (height curves) and  

2. volume biomass/carbon from dbh or from dbh and height or from dbh, height and an upper 

diameter (volume functions, biomass functions or carbon functions respectively).  

Of course, other models are in use for specific purposes, for example, in stump inventories, 

predicting dbh from stump diameter (and stump height); or for buttress trees, predicting dbh from 

the diameter above the buttress roots.  

For biomass functions, frequently the term allometric biomass functions or allometric biomass 
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models is used. The term allometric derives from ancient Greek and Latin, where “ἄλλος” (allos) 

means other and metric means measure. Allometric, therefore, means determining biomass from 

other variables. Following this original meaning, the term is essentially redundant when specifying a 

model—because it simply describes what all models do: produce the value of a variable from 

measurements of values of other variables. 

The model types listed so far are commonly generated from research studies prior to the inventory. 

For specific forest inventories, biomass models are usually taken from the literature after checking 

their suitability for the specific inventory (discussed later in this lesson). 

However, there are also models that are generated with and from the inventory data itself: a typical 

example is a height curve used to predict tree heights. Height measurements are time consuming 

and therefore expensive, so that heights are measured only on a (well-defined) subset of sample 

trees. A model is then built from these measurements, that is used for predicting the heights of the 

unmeasured trees. In this case, the height measurements will exhibit a greater variability than the 

predicted heights, because these predicted heights represent mean values for a given dbh class. 

Example 4: Models calculated from target and auxiliary variables 

Another example where models are built during the inventory implementation is when auxiliary 

variables are observed for use with the ratio or regression estimators, or in double sampling with the 

ratio or regression estimator: then, a model (either a simple ratio or a regression) is calculated from 

the sample plots where both variables, target and auxiliary variables, have been recorded. The model 

supports estimation and allows—when there is sufficient correlation between the target and 

auxiliary variables—for a more precise estimation of the target variable. That is, the model assists the 

estimation process, and therefore the estimator used is also called a model-assisted estimator. 

While the estimation process in this case is supported by the model, the unbiasedness of the 

estimation still comes from the randomization of the sample selection, which ensures that the 

sample is representative of the population. However, note that the ratio estimator is only unbiased 

when the simple model holds. This means that the model should accurately capture the relationship 

between the target and auxiliary variables, and that there are no other factors that may affect the 

estimation process. If the simple model does not hold, the ratio estimator may be biased and the 

estimation results may not be accurate. 
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Estimation and inference may also be completely based on models—and the corresponding 

approaches are named model-based estimation or model-based inference. In this case, the 

unbiasedness of the inference is entirely dependent on the validity of the model. 

A typical example here is modelling the relationship between field-observed biomass and remote 

sensing data. When such a model has been established, it is possible to predict forest biomass for 

each pixel. With such prediction, one is in the position not only to produce an estimate of biomass 

for the whole inventory region (by summing up the biomass predictions per pixel), but also to 

generate a biomass map 

 

Note 

From the relatively long list of models used in forest monitoring it becomes clear that they play a 

crucial role here: this is mainly because forests are complex objects to monitor, and diverse variables 

of interest cannot directly be observed. In order to make a monitoring system operational, it is 

essential that we work with model-predicted values. It is, however, important to clearly distinguish 

between values that are being recorded by immediate observations/measurements and those that 

are predicted from models. 

The two major points we need to remember here are that: 

Ü immediate observations carry only one error source: the measurement error, while model 

predictions carry measurement errors (of the required predictor variables) and model errors; 

and 

Ü model predictions present lower variability than immediate observations: for the same set of 

predictor variable values the same predicted value is always generated, while in reality, for 

example, different trees with the same dbh may have quite different biomasses. 

 
 
Major characteristics of statistical models 

Let us now look at the main characteristics of statistical models. 
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Models predict mean values, not true values 

It is important to understand that given a set of predictor variables, models do not yield the true value 

of a predicted variable. Predictions need to be understood as mean values. By using a model to predict, 

for example, tree height from dbh measurements, we assign mean heights to the sample trees: all trees 

with a specific dbh, say 40 cm, will have the same predicted height. 

This, of course, does not correspond to the true situation where trees with the same dbh vary in height: 

that means that the variance of predicted heights of sample trees is always smaller than the tree heights 

would they have been measured. 

Statistical models are based on sample observations— and the model coefficients are 

themselves estimates 

All models are estimates by themselves—they are based on observations on a set (sample) of trees and 

they do not represent the parametric (true) model, but only an approximation (estimate) of it. When 

different field teams would take a random sample of 100 trees—each from the same inventory region 

but with different randomizations—to calculate a biomass model, each using the same mathematical 

model, they will all come up with different model coefficients. 

As with the common sampling for mean values, the precision of the estimate will usually become better 

when the sample size is larger: for each predicted individual value or mean value, confidence intervals 

can be determined. To do so, of course, measures of variability of the model need to be known. 

 

Statistical models are characterized by statistical measures 

As with the sample-based estimation of mean values, it is important also for the estimated models to 

accompany the point estimates with interval estimates. The point estimates for regression models are 

the estimated regression coefficients. For each estimated regression coefficient, a standard error can be 

estimated, and the smaller it is, the more precise the estimate. 

An important characteristic is the significance of the regression—if, for the example of a simple linear 

regression, the slope coefficient is not statistically significantly different from zero, we say that the 

regression is not significant. This means that the regression line is parallel to the x-axis and, 

consequently, that the predicted value for the target variable, y, will be the same for all predictor 

variables, x. This predicted value is the mean value for y. So instead of calculating a regression that 
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determines a specific mean value per class of x values, one can use the overall mean, as predicted value 

for all x classes. 

Statistical models employ variable data points 

Another important statistic that characterizes the precision of prediction from the regression model is 

the variability of data points used for model construction around the regression line. Just as the values 

of one single variable vary around the mean value, the data points in a regression model vary around 

the regression line—where the regression line represents a shifting mean value that takes on different 

values for different x-classes. We call this variability the residual variance. When this variance of the 

residuals is small, the data points are closely clustered around the regression line, and we may assume 

that the model predictions are quite precise. 

Remember that it is not only important to know the regression coefficients so that one can calculate the 

predicted values, but also to know the variance statistics of the model to be able to evaluate its quality. 

The precision of estimation from a simple linear regression model, for example is highest around the 

mean value of the predictor variables and becomes lower towards the ends of the range of predictor 

values included; beyond this range, the model should not be used, and if so, the precision will be low. 

Statistical models hold for “specific conditions” 

The base data used to build a model co-defines the validity of the model for a specific inventory 

purpose. When we refer to base data, we mean factors such as: 

Geographic region In the best case, the base data come from the geographic region where 

the inventory takes place. If this is not the case, one should make sure 

that the model is suitable (see section on Identifying suitable statistical 

models in this lesson). 

Tree species Some models are specific for one species or for a species group; 

whether they would also apply for other species would need to be 

checked. 

Range of input variables Models should generally be used only for values of input variables that 

are covered by the base data. It may be a risk, for example, to use a 

biomass model that has been built for values of between 30 and 150 cm 

also for smaller trees below 30 cm—it may be that such extrapolation 
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produces unplausible values as the model function is essentially not 

defined outside the range of the base data. 

 
 
How to build your own biomass model 

Building your own biomass model is usually not a task in an NFI project. One may resort to models that 

have been published before. Sometimes, these models were built in the framework of academic 

research or technical reports and are difficult to find. But it is likely that models exist that are suitable 

for all situations. 

FAO, together with CIRAD, offer a database for hosting biomass models in the GlobAllomeTree Initiative, 

which may serve as reference when searching or building biomass models. An in-depth manual on the 

development of allometric equations is a good consultation for those interested (Picard et al. 2012). 

In this section, we briefly outline the steps that you need to follow in order to build your own biomass 

model. The process holds equally for any other statistical model. For example, when you wish to 

estimate the biomass of illegally removed trees from a stump inventory, you would apply normal 

biomass models, and to do so you need to predict dbh from stump diameter and you may wish to build 

your specific model here. 

Note 

There are a number of models published for different tree species that allow predicting dbh from stump 

diameter. This is either simple factors (e.g. Bones, 1960) or regression models, some of them also 

including the stump height (e.g. Pond and Froese, 2014). 

Note that we do not find a definition of stump diameter or of stump height in these publications not any 

indications on how to measure them. However, stump diameter can be very irregular (as trees are often 

times buttressed at very low heights) and would require clear and unambiguous definitions. 

This illustrates the relevance of unambiguous definitions, not only in forest monitoring, but also when 

referring to input variables for statistical models. 

 

http://globallometree.org/
http://globallometree.org/
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Step 1: Start with definitions 

Following good practices of forest monitoring that recommend having clear and transparently 

documented terminology, definitions and measurement, you should start with definitions.Definitions 

extend to the population from where the sample trees are to be taken, including 

• the geographic definition of the precedence area of sample trees; 

• a species or species group definition; and 

• a definition of the range of dimensions (usually range of dbh) for which the model shall hold. 

Furthermore, biomass needs to be defined in terms of biomass compartments (stem, large branches, 

smaller twigs, below ground, leaves, etc.) are to be considered as well as minimum diameters. 

Step 2: Determine the number of sample trees to be felled 

The number of sample trees to be felled needs to be determined; this is usually done according to the 

resources available. Because felling and weighing trees is costly, the number of trees is usually quite 

limited, even though it is good to work with larger numbers of sample trees to make the models predict 

with higher precision. 

It makes a big difference to sample a large tree or a small tree, as the felling, chopping and weighing of 

larger trees will be over-proportionally and much more expensive. This leads to a situation where most 

biomass studies have many smaller trees and only a few larger trees. 

This is a sort of dilemma, because the variability in biomass of smaller trees is much smaller than the 

variability in larger trees, and the conclusion would be that we need larger trees in order to have a 

better foundation for a model where the variability is larger (and where frequently the largest portion of 

forest stand biomass is in the large trees). 

Step 3: Select the sample trees 

While the general shape of biomass models is quite well known and follows some physical laws, the goal 

is to try to determine the shape of the biomass function over the whole range of input values (usually a 

dbh range). This means that one should try to select sample trees for all diameter classes—and 

(theoretically) more sample trees where the variability of the target variable (biomass) is largest. 
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Reality check 

The selection of sample trees is often dominated by practical considerations such as accessibility, cutting 

permits, and others. This is another example in the context of forest monitoring where theory comes to 

head with practice, in other words, where science meets real life. 

 

Step 4: Measure the sample trees standing 

Sample trees first need to be measured standing—such as when measuring the predictor variables in a 

default forest inventory. For example, tree height can hardly be determined after felling—because then 

what we measure is tree length. Also, dbh is best measured at the standing tree because after felling it is 

more difficult to determine breast height. 

Step 5: Fell the sample trees 

Once the sample trees have been measured while standing, they need to be felled carefully, because it 

is necessary to ensure that all relevant biomass parts can be attributed to that sample. 

Thereafter, the relevant biomass compartments need to be separated and weighed. 

Reality check 

While measuring and felling the sample trees, it is common practice that measurement errors are not 

considered nor factored into the model when determining the uncertainty measures. The 

measurements both at the standing and the felled sample trees are simply taken as true values. 

We know, however, that this is not the case and that measurement errors may play a role, particularly 

when the number of sample trees is low. In NFIs, we usually do have large sample sizes and a large 

number of sample trees recorded; then, we may assume that the random measurement errors have a 

relatively small weight as the large number of observations will keep the error variance low. 
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Step 6: Manage sample tree data 

Sample tree data will need to be managed in a database where all compartment-wise results are stored 

and eventually summed up to the target value(s) for each particular sample tree. In the end, and as 

input for further analyses, a list is produced with per-tree data of target variable and predictor variables. 

Such a list is the input matrix for estimation of the model coefficients. 

Step 7: Identify a mathematical model that fits the data set well 

The next steps are applied statistics: a mathematical model needs to be identified that is able to fit the 

data set well. For biomass models, as for other models, typical mathematical models are known. It is 

common to compare the performance of different mathematical models and choose the one that allows 

the most precise predictions. 

A common approach is to create a model using a random selection of 75 percent of the sample trees, 

and then evaluate the model's performance using the remaining 25 percent of the sample trees. Here, 

we consider the 25 percent check-trees as independently selected trees for model validation. 

It is important here to distinguish between 

1. the model uncertainty, which results from the analysis of the 75 percent of sample trees used 

for building the model; needless to say, the model fits quite well to this data set because this 

data set is the basis for the model; and 

2. the prediction uncertainty, which is usually larger and refers to the prediction for trees that had 

not been used for model building. Consider here, that the sample trees used for building the 

model are a sample from the population of interest, and, of course, our sample will not be able 

to capture all variability present in the population but it is just an estimate.  

Then, all trees recorded in an inventory belong to this set of trees that had not been used to build the 

model. Hence, prediction uncertainty is an important point in model development. Picard et al. (2012) 

provides insights into these issues. 
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Once you are happy with the model uncertainty and the prediction uncertainty, you may come back to 

the whole sample tree data set and estimate the final model coefficients from 100 percent of the 

sample trees. 

Note 

A number of statistical issues need to be considered when building the statistical model so that it makes 

sense to consult with a statistical modeler when building and choosing a specific model. The statistical 

issues include: 

1. correlation between predictor variables (the so-called collinearity), and 

2. a typical feature of biomass (and volume and carbon models): the variability of biomass that is small 

for smaller trees and large for larger trees (the so-called heteroscedasticity). 

The latter affects the estimation of variances and confidence intervals for predictions of mean values 

and individual values—for example, for biomass models as a function of dbh only, the confidence 

intervals will be narrow for smaller trees and become wider with increasing dbh. 
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Step 8: Document the model 

Once the final model has been decided, a complete and transparent reporting of the model is the last 

step, not only do the model and its coefficients need to be documented, but also the uncertainty 

characteristics, including coefficient of determination, standard error of the regression and prediction 

uncertainty, and other possible uncertainties. 

One may also wish to make the original data set publicly available, because such data sets may be very 

helpful when combined with new data sets to generate more precise, more locally adapted or more 

generalizable models. 

 

Identifying suitable statistical models 

There are many statistical models available for forest monitoring. The IPCC, for example, offers a long 

list of different conversion factors and biomass functions (see, e.g. IPCC 2006 Guidelines Publications - 

IPCC-TFI (iges.or.jp) or their refined 2019 values Publications - IPCC-TFI (iges.or.jp). 

In many cases, it is clear from the outset which model to use, because it has been used before in the 

same geographical or subject-matter context, or is known to perform well under the circumstances of 

the particular inventory project. In NFIs that extend over vast areas, and include many species and 

species groups, it may be adequate to apply different models depending on species group, and/or 

geographic region and/or site conditions. 

A first step of model selection is to check which models had been in use before, the precedence of the 

sample tree data used for model building and to evaluate the uncertainty statistics of the models; 

usually, the more sample trees had been processed, the more accurate the model. Sometimes a decision 

needs to be made whether, for example, to use various species-specific biomass models or a general 

model for all species. In NFIs where the sample sizes are commonly large, the recommendation from 

recent research is to look at the number of sample trees used for model building rather than at the 

specific species for which it had been built. This means that a general model for all species based on a 

large number of sample trees is usually preferred over using various species-specific models built on 

small tree numbers each. 

 

https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html
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Quick tips! 

Some rules of thumb have been identified in regard to biomass model development (McRoberts and 

Westfall, 2014): the number of sample trees should be at least 100, and the models should have a 

coefficient of determination larger than 0.95. Then, in NFIs, model errors in biomass are usually 

relatively small as compared to the standard error. 

However, it is important to emphasize that the minor role of model errors, in NFIs with large sample 

sizes refers to random errors only, while potential systematic errors and biases will, of course, 

propagate accordingly as biases into the final estimates! 

 

In situations where the choice of model is not clear from the outset, the task is to check the suitability 

and compare the performance of different models. That can only be done by a sufficiently large number 

of sample trees, and that is costly, particularly when dealing with biomass models because 

determining/measuring the biomass of sample trees is always costly. 

The UNFCCC (2011) gives a basic and hands-on guidance on how to do such suitability test for models on 

forest aboveground biomass. A comprehensive and science-based description of such analysis of the 

suitability of models in general can be found in Pérez-Cruzado et al. (2015). 

 

Reporting issues in statistical models 

There are essentially two types of reporting issues when talking about statistical models in forest 

monitoring: 

Reporting the model by itself and allowing the potential user to fully understand the precedence and 

characteristics of the model 

Here it is important to document all details of model building transparently and completely, as 

mentioned before: where the sample tree data come from in terms of geographical region, sampling 

approach and possible restrictions, how many sample trees there were used and how distributed were 

they over the range of the predictor variables. 
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Essentially, all details of model building need to be reported that are necessary for a potential user of 

the model to understand it and its background. This also includes statistical measures of model 

accuracy, even though it is not a common default practice in NFIs where model errors are reported and 

propagated to the total error (also see the point below).However, the uncertainty measures are 

important when a potential user compares different models; then the user may tend to prefer the more 

accurate model. 

Reporting the predictions from a model within the context of an NFI implementation 

Here, model predictions are dealt with in forest inventory projects like normal observations, the 

corresponding model uncertainty is commonly not reported, as their contribution to the final error has 

been proven to be minor in empirical and theoretical studies. However, it is good practice to document 

which models have been used and give their source and characteristics in the inventory report. 

 

Summary 

Before we conclude, here are the key learning points of this lesson. 

• Statistical models aim to establish a quantitative relationship between a predicted variable and 

one or more predictor variables. 

• Statistical models do not serve to establish a cause-effect relationship - this would be tackled 

with process models, which aim to explicitly include the causalities inferred by biological 

processes. 

• There are different types of models of varying complexity that are used in forest monitoring, 

and in some cases, it is difficult to notice that a model has been used. 

• In many cases, it is clear from the outset which model to use because it has been used before in 

the same geographical or subject-matter context, or is known to perform well under the 

circumstances of the particular inventory project. 

• In NFIs that extend over vast areas, and include many species and species groups, it may be 

adequate to apply different models depending on species group, and/or geographic region 

and/or site conditions. 
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Lesson 4: Errors in forest monitoring 

Lesson introduction 

This lesson elaborates on the types and roles of random errors as they occur along the NFI process. It 

also discusses error propagation—how the error sources propagate to the total error of the final result. 

Learning objectives 

At the end of this lesson, you will be ale to: 

1. Define the term 'error' in empirical sampling studies. 

2. Describe why error considerations are important in forest monitoring. 

3. Explain the relationship between error and effort. 

4. Understand the types and roles of errors in forest monitoring. 

5. Explain how to cope with errors in forest monitoring. 

 
General observations on errors in forest inventories 

Definition of the term error in empirical studies 

Forest inventories are empirical sampling studies, where it is more accurate to refer to errors as residual 

variability and not as mistakes. While mistakes can be avoided through careful work and a permanent 

quality orientation, errors cannot—we can only attempt to keep them small. The errors we are referring 

to here, are random in character and tend to follow the Gaussian error distribution, also known as 

normal distribution.  

As mentioned, and contrary to random errors, systematic errors or biases can usually be avoided, 

because they are based on miscalibrations, the use of biased estimators, or other mistaken applications 

of data generating approaches. Because random errors are omnipresent, one may try to make the field 

teams and other data generating parties work in a careful and consistent manner to help keep the 

corresponding error sources small. Commonly, in statistical sampling, we refer to systematic errors as 

defining the accuracy, while random errors define the precision. 



Course 7:  Elements in data analysis t inventory   

 

 
Text-only version                                                                    © FAO 2024 

 
36 

 

 

Did you know? 

Precision and accuracy are two core terms in statistical sampling, and they are determined by 

systematic (bias) and random errors. Often, the term uncertainty is used in reporting when 

referring to errors, as it is a less technical and more accessible term. But it is also less clearly 

defined. Therefore, when using the term uncertainty in the context of statistical sampling, it is 

a good practice to clarify what is specifically meant. 

 

Why are error considerations so important in forest monitoring? 

The presence and magnitude of errors are important factors contributing to much of the credibility of 

inventory results. If the error is 50 percent, one would have less trust in the results than for an error of 1 

percent. It is, therefore, imperative to report the errors for all results, quantifying the errors that can be 

quantified and addressing/discussing the errors that cannot directly be quantified. 

When planning the inventory design, it is always the goal to use the available resources to optimize the 

precision of estimation and avoid systematic errors. Therefore, it is important to understand the roles of 

different inventory design elements and how the corresponding error sources contribute to the overall 

errors. If, for example, there are additional resources available that can be used to improve the 

inventory design, one will need to identify how to allocate these resources, such that they contribute 

best to increased precision = reduced uncertainty = reduced overall error for the core target variable(s). 

 

The relationship between errors and efforts 

Standard error is often displayed as a function of effort. Effort is defined as the sample size that can be 

established. The marginal increase in precision is smaller with increasing precision. This means, for the 

same effort, you will get a smaller increase in precision if you start from an initial high level of precision. 

Here, the error refers to the standard error and effort refers to the sample size that can be established. 

Therefore, when optimizing forest inventory designs for error reduction, it may be straightforward to 

first look at sources of relatively large errors—even if their impact on the final error appears not the 

heaviest at the first glance. 
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To give an example: in the figure below, we assume SRS and an estimated standard deviation of s=100. 

The increase in sample size by 1 from n=2 to n=3 reduces the estimated standard error from SE=70.7 to 

SE=57.7, that is by about 18 percent. If we invest the same additional resources in absolute terms and 

increase the sample size by 1 from n=19 to n=20, the increase in precision = reduction of the standard 

error from SE=22.9 to SE=22.4, which is a relative reduction by about just 2.2 percent. 

 
 
 

The relationship depicted in this figure holds for the standard error in SRS designs. However, one may 

assume that similar relationships hold for other sources of error, for example, increasing training efforts 

by a fixed absolute amount for better observations of variables will commonly have the largest effect for 

those variables whose measurement error is relatively large (such as measuring tree height), and will 

not have large effects when looking at variables whose measurement error is already quite small (such 

as measuring dbh). 

What is good precision in NFIs—what error level should be targeted? 

There is no generally valid rule on the target precision in NFIs. The common approach is that the 

resources (budget) is defined, and the inventory is designed such that the best precision is achieved 

under the restrictions of these resources. The achieved precision is a function of the sampling design 

and, particularly, of the sample size. 

In some NFIs sample size is in the order of magnitude of the 10 000s so that the precision of estimation 

for the whole country is high—in some cases the relative standard error is under 1 percent—but in 

others, sample size may be two orders of magnitude lower, producing relative standard errors above 10 
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percent. When, however, estimates are produced for smaller sub- populations, where the sample size is 

much smaller, the standard error may go up and reach levels for which the reliability of the results may 

be compromised. 

Types of errors in forest monitoring and their role 

Forest monitoring systems are complex, and many people are involved in their implementation. This has 

the potential to increase the various sources of errors that need to be observed in planning and 

implementing these systems. There are three types of errors that occur in forest monitoring and all play 

an important role, but have varying relevance depending on the design of the inventory: 

� Measurement error; 

� Model error, and 

3 Sampling error. 

In this section, we will take a deeper look at what each of them constitutes. 

Measurement error 

Whenever an observation is made, this observation is subject to residual variability. When, for example, 

the dbh is measured with a very fine-scale caliper, say to the 5th decimal of a millimeter, repeated 

measurements—that were all very diligently and correctly carried out— would practically all yield 

different measurements. The variability of these measurements indicates the existence of measurement 

errors. 

Such measurement errors can occur beyond quantitative variables. Categorical variables that are 

observed in, say, 10 different classes, can present misallocations: such measurement error would then 

also be referred to as classification error. Or, when observing nominal variables, such as tree species, 

confusion/misidentifications, also considered as measurement errors, may occur. It is important to 

realize that measurement errors will occur at the observation of any variable. 

An interesting case is the measurement of tree height by the trigonometric principle. In fact, height is 

not measured, but calculated from three measurements: the horizontal distance to the tree and the 

angle measurements to the top and the bottom of the tree. Depending on the measurement device, 

horizontal distance may also be based on two measurements: slope distance and slope angle. All these 



Course 7:  Elements in data analysis t inventory   

 

 
Text-only version                                                                    © FAO 2024 

 
39 

individual measurements carry their specific measurement errors and the error in height comes 

ventually from the propagated measurement errors of all these individual measurements. 

 

 

 

Quick tips! 

In forest monitoring, there is usually not much information available about measurement errors, and measurements 

are used in the calculations as if they were error-free. However, for large numbers of sample trees, as usually is the 

case in NFIs, one can justify ignoring random measurement errors and not report them explicitly as they will be very 

small compared to the sampling error. 

If interested, however, some small research studies may be established where different field teams make all 

observations on a set of sample plots. The variance of the measurements for the various variables may then be 

considered as an approximation of measurement/observation errors; this may extend to measurements of dbh and 

height, to the identification of tree species and to the number of sample trees found per plot. 

 

Model error 

Models are very frequently used in forest monitoring to establish relationships that allow predicting 

variables that cannot or are too laborious to be measured (also see Lesson 3 of this course). What is 

read from a model is, of course, not the true value of the object at stake. When, for example, the stem 

volume is read from a volume model as a function of dbh, then what is read as the tree's stem volume is 

actually the stem volume of all trees in this dbh class—and the true volume of the particular tree will 

deviate from that. This is what we may refer to as model error. 

In forest monitoring, model errors are commonly not reported nor factored into the interval estimates. 

The predictions that are made from the models are taken as true values, or error- free. In models for 

tree variables like biomass, volume or height models, as long as the models used are based on a 

relatively large number of sample trees, and as long as the number of sample trees in the inventory is 

large, it may well be justified not to report the model errors, as they will be very small compared to the 

sampling error. 

 

Sampling error 
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The sampling error originates from the fact that we are not observing all elements of a population but 

just a sample. Therefore, all results are estimates and they deviate from the true value in a way that is 

described by the standard error. In forest monitoring, the standard error is normally unbiasedly 

estimated for most sampling designs, except for systematic sampling, where we need to resort to 

approximations or to conservative estimates of error variance/standard error when applying the SRS 

framework. 

The roles of these errors 

All the three types of errors outlined above exist in all forest monitoring studies. Much research has 

been done over the past decade, particularly in the context of estimating forest biomass, to find out 

what the relative contributions of these errors are to the final estimate of biomass. We focus here on 

national forest monitoring, and among the major characteristics of NFIs is a large sample size and, 

consequently, a very large number of sample trees. 

A most relevant finding has already been published in one of the earliest articles on propagating error 

sources to the final error: Gertner and Köhl (1992) coined the term error budget and found that in the 

Swiss NFI the biggest weight by far has the sampling error with about 98 percent of the total error. 

Model errors and measurement errors accounted only for the little percent remaining. This is an 

important finding because it is commonly only the sampling induced standard error that is being 

reported in forest inventories, while the other sources are frequently not quantified and reported. 

This finding holds for NFIs with large sample sizes. In smaller inventory studies with smaller sample sizes, 

the relative weight of measurement and model errors may be considerable larger. 

How to cope with errors in forest monitoring 

While we can avoid systematic errors by careful planning and implementation, random errors still occur. 

Therefore, the goal is to keep these random errors (= the residual variability) small. It is among the 

principal goals in forest monitoring to produce estimates that carry reasonably small errors. We say 

'reasonably small' because any increases in precision will cost resources and are particularly costly when 

the precision is already relatively high. In NFIs, the sampling error is the most important error variance 

component and choosing an appropriate sampling design and then an appropriate sample size are the 

leverages that are available to adjust for the standard error (i.e. sampling error). 

Careful work, training and periodic control can help reduce measurement errors. Here, the major point 
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is in avoiding systematic errors by, for example, miscalibration and to keep the field teams motivated so 

that they permanently maintain the ambition to produce good data; long field periods are tiring and can 

easily lead to a deterioration of motivation and as a consequence, of data quality. 

Regarding model errors however, everything depends on the tightness of the statistical relationship 

between the target variable and predictors and on the choice of the model and the quality 

characteristics of the model, which are co-determined by the number of observations that underlie the 

model. In general, the more data used to build a model the more reliable it can be considered. 

Forest inventory projects and forest monitoring programs are complex. The three types of errors 

addressed above may occur at any step of these systems, and the major interest is eventually in the 

total error in the target variables. It is intuitively clear that all errors that enter at different steps of the 

process will have some impact on the overall error of the target variable, that is, their impact is 

propagated though the different steps of the inventory process into the final target variable. 

In this context of error propagation, there are a couple of points to consider: 

1. How the mechanism of error propagation works, and how the overall error is determined. This 

is important for reporting the overall error as an indication of precision and overall reliability of 

the results. 

2. To what extent the different errors contribute to the overall error. This is important in the 

context of optimizing the inventory design for follow-up inventories: one will strive to reduce 

those errors (at an acceptable cost) that have the biggest impact on the error of the target 

variables. 

Basic principles of error propagation 

The basic principles of error propagation are straightforward and depend on how the different input 

variables and their errors are linked: 

A good and understandable introduction into error propagation is Taylor (1997), which covers the rules 

to combine random variables according to the operation used to combine them. Shorter introductory 

lectures that include sums, products, ratios and other operations can be found in the following 

locations: 

Guide to Uncertainty Propagation and Error Analysis: Stony Brook Introductory Physics Labs 

http://phylabs1.physics.sunysb.edu/~physlab/ReferenceDocs/ErrorAnalysis.pdf
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A Summary of Error Propagation 

Propagation of Uncertainty through Mathematical Operations 

What is elaborated in Taylor (1997) is an analytic approach to error propagation that can directly be 

applied to functions of random variables. If, however, an error propagation shall be done in a complex 

inventory design, where many different error sources need to be considered, such analytical error 

propagation becomes extremely difficult. Then, a simulation study (also called Monte-Carlo Simulation), 

might be more appropriate. 

To conduct such a study, there must be information available on the different error components. 

Commonly, normal distributions in these errors are assumed. Then, the target variable (e.g. biomass) is 

calculated from all input data, where for each point estimate a random deviation is determined from its 

normally distributed error. This is repeated very often—say 10 000 times— and the variance of the 

resulting final values of the target variable is then the propagated total error variance. Instructive 

examples can be found in Molto et al. (2013), McRoberts and Westfall (2016) and Lin et al. (2023). 

Both simulation and analytic calculation of error propagation allow for an evaluation of the weight that 

the different error components have in the error of the final estimate, so these error propagation 

exercises are very instructive when optimizing the inventory design. 

McRoberts and Westfall (2016) give an instructive example of how a simulation study can be done when 

the interest is in propagating various error sources in forest monitoring to the final target variable. If an 

estimate of biomass is the target variable, the two authors integrated the following sources of error into 

their simulation: 

Ü If an estimate of biomass is the target variable 

the two authors integrated the following sources of error into their simulation: Variability of model 

parameters estimates, (β), in the allometric model; Variability of dbh measurements; Variability of 

height measurements (and other input variables to the model); Residual variability (what is predicted 

from the model is not the true biomass); Aggregating individual tree biomass to plot biomass; and 

Estimating total biomass for the study area from a sample of n plots (with a defined sampling design). 

Ü The simulation was then done as follows: 

For each simulation, a set of input values is determined for the above variables, where error 

components randomly chosen from normally distributed errors are added to the point estimate. Then, 

http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3_Error_Propagation_sp13.pdf
https://web.mit.edu/fluids-modules/www/exper_techniques/2.Propagation_of_Uncertaint.pdf
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the total biomass is determined for this particular setting. The simulation is repeated often (m) times, 

each with input values that are determined from the point estimates plus a random error component. 

The variability of the resulting, m, total biomass values is then an empirical approximation of the 

propagated total error. 

Some closing comments on error propagation 

A comprehensive list of potential sources of error typically arising in the processing chain to calculate 

emission factors, activity data and total carbon is reported by countries. The list contains possible 

concepts that are too cumbersome and out of scope of these courses. 

Please note that green routes are defined exclusively by inventory data. Blue routes are followed by 

satellite data processing. The blue–green box stems from the combination of inventory-based emission 

factors and satellite-based estimates of activity data. 
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Flow of errors in inventory-based emission factors (in green) and satellite-based activity data (in blue) 
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Summary 

Before we conclude, here are the key learning points of this lesson. 

• Forest inventories are empirical sampling studies, and when we talk about errors in empirical 

sampling studies we refer to residual variability and not to mistakes. 

• The presence and magnitude of errors are important factors contributing to much of the 

credibility of inventory results. 

• There is no generally valid rule on the target precision in NFIs—the precision is decided by the 

most effective blend of resources (budget) and the inventory design. 

• There are three types of errors that occur in forest monitoring and all play an important role, 

but have varying relevance depending on the design of the inventory: measurement error, 

model error and standard error. 
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Lesson 5: Typical products from data analyses in forest monitoring 
 
The major goal of data analyses in NFIs is to transform NFI data into meaningful information for 

stakeholders and interested parties. This lesson elaborates on the major products generated from NFIs. 

 

Learning objectives 

At the end of this lesson, you will be ale to: 

1. Describe potential products of NFI data analyses. 

2. Identify the role of data analyses for reporting of forest inventories 

Products from forest monitoring data analyses: General observations 

Data analyses generate NFI results that eventually comply with the expectations stated in the 

information needs assessment. In this section, we will briefly address the general types of products that 

are expected to be produced from NFI data. 

Having a clear idea of potential products from NFI data analyses in the planning phase and during the 

INA always helps. It is also instructive—in the INA phase—to present all potential outcomes of NFI data 

analyses and to narrow this down to what can be realistically expected. 

 

 

 

Quick tips! 

It is not necessary during the INA phase to consider all analysis implications—this is the business of 

data analysts. However, it is certainly helpful to have experts with NFI data analysis experience 

present in the information needs assessment so that completely unrealistic expectations can be 

avoided. 

A typical example is the expectation that NFI data can be directly used for forest planning purposes 

on district or even stand level; here, an experienced inventory expert will need to clarify the 

possibilities and limitations of NFI data sets. 
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Types of products 

Keeping in mind the vast array of results and products that can be generated, NFIs produce 

comprehensive data sets that include various analysis options. In general, it is good practice to present 

the results using two distinct strategies: 

1. one for the stakeholder and decision maker (which needs to be technical- scientific and 

following the requirements expressed in the INA); and 

2. one for the general public (which needs to summarize the major findings in an accessible, 

though precise, language). 

For what concerns the technical-scientific products, we can break down the information into four 

categories as follows: 

1. standard statistics; 

2. maps 

3. N FI design optimization; and 

4. Use in academia. 

Standard statistics 

The results of NFI data analyses cannot encompass a complete list of standard results. Therefore, it is 

best to limit ourselves to those that are commonly produced in NFIs, along with the specific additional 

products that arise from the particular information needs for a specific country. 

For example, in a country with a low forest cover, it may be extremely relevant to also produce results 

on trees outside the forest (TOF)—while in countries with a high forest cover, this tree resource may be 

of minor relevance (of course, analyzing data on TOF is possible only when the assessment of TOF is 

integrated into the inventory design). 

The basic units of reference for analyses typically are the whole country and sub-national units— 

provinces, states, or defined eco-zones. In most cases, the sample size of NFIs does not allow to go 

farther down and produce estimates for smaller units, unless special scientific analysis techniques such 

as small-area estimations are used as an advanced approach. 
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Did you know? 

What is small-area estimation? 

NFIs commonly use systematic samples with a grid size in the range of kilometers. This is why 

reasonable estimates cannot be produced for relatively small units (e.g. a few km2) because the sample 

size is too small. 

However, ongoing research is investigating how to seize large-area information produced by NFI 

sampling and use it to produce results also for smaller geographical units. This may be done by linking 

the field observations to full cover remote sensing data, which is then used as auxiliary data to establish 

models that allow predicting target variables for any pixel, that is: over the whole inventory area. Then, 

data of the target variables are available not only at the field observed points but for any location (pixel) 

in the inventory region. This approach to produce results from the large area coarse field sample for any 

small area unit within the inventory region is called small-area estimation 

Of course, the prediction uncertainty for the small areas depends exclusively on the quality of the model 

that is being derived and used, linking the large area field observations and the remote sensing data; 

and this depends, among other factors, on the spatial and spectral resolution of the remote sensing 

data, on the plot design of the field inventory, and on the quality of co- registration field and remote 

sensing data. 

 

Estimates of areas include: forest area, area of forest types, areas or percent area for particular tree 

species, areas per management types, of protection status, of degradation status, of ownership, or 

topographic features. Results are then produced for each of these reporting units, for example forest 

area per sub-national unit, forest type areas per country and per sub-national unit, forest area in 

different elevations, etc. Presentation is commonly in the form of two-way tables, like for example area 

of, say, 5 forest types within 10 sub-national units. 
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 Forest specification 

Land Measure Stocked 

timberland 

Temporarily 

unstocked 

Timberland Unstocked 

forest land 

Forest 

Baden- 
Württemberg 

[ha]  
Prim  

SE [%] 

330 625 
4 600 

1.2 

1 301 
13 

27.7 

1  331  
9264 601 

1.2 

39 922 
372 
5.2 

1 371 847 
4 620 

1.2 
 [ha] 2 534 232 3 796 2 538 028 67 535 

194 
7.7 

2 605 563 
2 815 

1.6 
Bayern Prim 2 795 11 2 797   
 SE [%] 1.6 33.7 1.6   
Brandenburg+ 
Berlin 

[ha]  
Prim  

SE [%] 

1  096 101 
907 
2.7 

2 369 
6 

40.8 

1  098 470 
907 
2.7 

32 378 
67 

12.8 

1 130 847 
909 
2.7 

 
 [ha] 845 792 7 598 853 390   
Hessen Prim 706 19 706 40 790 

91 
10.8 

894 180 
715 
2.9 

 SE [%] 2.9 22.8 2.9   
Mecklenburg- 
Vorpommern 

[ha]  
Prim S 

E [%] 

538 651 
2 038 

2.1 

2 186 
19 

24.0 

540 836 
2 041 

2.1 

17 286 
148 
8.8 

558 123 
2 055 

2.0 
 [ha] 1 158 459 2 985 1 161 444 43 147 

135 
9.2 

1 204 591 
1 571 

2.4 
Niedersachsen Prim 1 552 12 1 555   
 SE [%] 2.4 30.5 2.4   
Nordrhein- 
Westfalen 

[ha]  
Prim  

SE [%] 

880 082 
861 
3.1 

3 997 
10 

31.6 

884 059 
863 
3.1 

25 452 
59 

13.3 

909 511 
867 
3.1 

Rheinland- 
Pfalz 

[ha]  
Prim  

SE [%] 

812 818 
2 828 

1.5 

2 290 
22 

21.7 

815 108 
2 831 

1.5 

24 688 
236 
6.5 

  

839 796 
2 848 

1.4 

Saarland [ha] 101 459 783 102 242 392 
1 

100.0 

102 634 
100 
8.0 

 Prim 100 2 100   
 SE [%] 8.0 70.5 8.0   
 [ha] 517 858 2 392 520 249 12 956 

56 
14.5 

533 206 
951 
2.9 

Sachsen Prim 943 12 946   
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 SE [%] 2.9 28.8 2.9   
Sachsen- 
Anhalt 

[ha]  
Prim  

SE [%] 

493 920 
1 829 

2.2 

9 067 
79 

12.1 

502 987 
1 845 

2.1 

29 494 
264 
6.3 

532 481 
1 884 

2.1 
Schleswig- 
Holstein 

[ha]  
Prim S 

E [%] 

168 426 
775 
3.8 

199 
2 

70.7 

168 626 
776 
3.8 

4 787 
45 

15.2 

173 412 
778 
3.7 

 [ha] 520 944 2 799 523 743   
Thüringen Prim 895 14 902 25 345 

118 
9.4 

549 088 
912 
2.6 

 SE [%] 2.7 26.6 2.7   
Hamburg + 
Bremen 

[ha] 
 Prim  

SE [%] 

13 054 
152 
5.6 

--- 13 054 
15 

25.6 

791 
2 

70.4 

13 846 
15 

25.8 
Germany (all 
Lander) 

[ha]  
Prim  

SE [%] 

11 012 
420 

20 844 
0.7 

41 742 
221 
8.0 

11  054 162 
20 885 

0.7 

364 962 
1 778 

2.9 

11 419 124 
21 040 

0.7 

 

Example of two-way table giving the forest area per Federal State in Germany (“Land”) broken down into 

different categories of forest land. This table had been produced from the online-tool of the German NFI; 

not only the estimated area is given but also the estimated relative standard error SE% and the number 

of clusters = primary sampling units (which corresponds to the sample size per sub-national unit) that fell 

into the combinations of Federal State and type of forest land. It is clearly visible here that precision of 

estimation is a function of sample size. 

Remember that when breaking down the areas, all breakdown criteria must be clearly defined so that 

the results can properly be interpreted along these definitions: one needs to clearly define 'forest' and 

contrast it to non-forest, and one needs to have clear criteria to distinguish within forest different 

classes of 'degradation', 'forest types', 'management types' and so on.Furthermore, it is important to 

consider that not all categories may be identified in the field or by using remote sensing imagery. In 

some cases, these categories need be taken from official documents. For example, ownership and 

protection status need to be extracted from cadastral maps and from maps of protected areas, 

respectively. 

Estimates of characteristics per area, including: volume/biomass/carbon stocks per hectare, number of 

trees per hectare, number of large trees, regeneration density, deadwood stocks in different dimension 

https://www.bundeswaldinventur.de/
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classes, and so on. 

District           Biomass (million 
tonnes) 

MoE (%) Carbon (million 
tonnes) 

MoE (%) 

Bumthang 80 ± 16 20 37 ± 7 20 

Chhukha 91 ± 21 23 43 ± 10 23 

Dagana 50 ± 8 15 24 ± 4 15 

Gasa 7±2 31 3 ± 1 31 

Haa 57 ± 10 18 27 ± 5 18 

Lhuntse 77 ± 19 24 36 ±9 24 

Mongar 95 ± 18 19 45 ±9 19 

Paro 30 ± 8 27 14 ±4 28 

Pemagatshel 18 ± 4 21 8±2 21 

Punakha 54 ± 9 36 25 ± 9 36 

Samdrup Jongkhar 72 ± 14 20 34 ± 7 20 

Samtse 20 ± 5 22 10 ± 2 22 

Sarpang 37 ± 6 17 18 ±3 17 

Thimphu 48 ± 25 51 23 ± 12 52 

Trashigang 96 ± 16 16 45 ± 7 16 

Trashiyangtse 41 ± 20 48 19 ± 9 48 

Trongsa 52 ± 11 21 25 ±5 21 

Tsirang 29 ± 11 39 14 ± 5 39 

Wangduephodrang 91 ± 16 18 43 ± 8 18 

Zhemgang 56 ± 7 13 26 ±4 13 

 

Again, we may illustrate this with an example of a one-way table giving the total mass in biomass and 

carbon per Bhutan (DFPS. 2019). The relative standard error (computed from the confidence interval) is 

also given for every district. 

Estimates of changes in the target variables, when the analyses refer to repeated inventories. When 

analyzing these results, it is important to observe whether the definitions might have changed. It may 

happen that the analysis reveals a change—but that part of the change can be attributed to changes in 

definitions. 
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One example is given here for the changes in estimates of deadwood stocks in the German NFI between 

2002 and 2012. A very large change in estimates of deadwood stocks resulted from the analysis. Part of 

this unexpectedly large change in estimates was due to the adaptation of the minimum diameter of 

recorded deadwood pieces from formerly 20 cm to the international IPCC standard of 10 cm. 

 

In this case, one may easily analyze which portion of the change can be attributed to the change in 

definition, because all required information was in the data (for application of the old definition they 

just needed to leave out all deadwood pieces with a diameter smaller than 20 cm). This would result to 

be more difficult when analyzing other modifications of definitions like the change of minimum crown 

cover in the definition of forest. 

It is important then, that the analysis makes clear what the components of these changes are: in this 

case, maintaining the old definition, the change would be an increase of 2.1 m³/ha from 11.6 m³ to 13.7 

m³, but in the graph it is shown as 4 times as much (9 m/ha from 11.6 m³ to 20.6 m³) because of the 

modification towards a more inclusive definition (BMEL 2014). 

 

If the analysis also produces estimates on trees outside the forest, this will need to refer to different 

non-forest land-use types, presenting essentially the per-area results, but for the non- forest land-use 

types. 

It is important to repeat here again that, for all point estimates, the analysis should also produce interval 

estimates (standard error or confidence intervals) so that the analysis shows the status estimate as well 
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as the uncertainty of such estimate. 

Confidence intervals are, of course, also of crucial interest for change estimates. If the value zero is 

contained within the upper and lower confidence intervals, one may assume that the changes not be 

significant. Here, of course, when deriving statements about statistical significance, the interpretation of 

the confidence intervals must take into account that it is usually systematic sampling that is used in NFIs. 

Maps 

Maps are frequently used to present NFI results and, often for many non-experts, they are more 

convincing than statistics. Full cover continuous maps can only be produced when area-wide remote 

sensing imagery has been analyzed and the respective models developed. 

Forest/non-forest maps are a base product that, accompanied also by biomass maps that are of great 

interest. As with all other forest inventory products, the inventory analysts should stress that maps may 

come with inaccuracies just like all products pertaining to empirical studies. As a result, these 

uncertainties should be properly documented and reported together with the maps. 

Example of a regional map showing the predicted distribution of growing stock over a region in India 

(courtesy Dr. Paul Magdon from an FAO consultancy to the Forest Survey of India). Sentinel- 2 

multispectral imagery was used as carrier data and n=170 field plots were available for model building. 

The following figure informs about the quality of the map by giving some variability measures of the 

underlying model; assuming here, as is commonly the case, that the field- determined values of growing 

stock had been generated free of observation or model errors. 

Validation of the model used in in the map above for the Sentinel 2- based model of growing stock. 

Explained variance: 34.02 percent. Observe that this model does not follow the 1:1 line and that there is 

considerable variability. The map gives, as so often, an impression of the spatial pattern of the target 

variable, but carries considerable uncertainty. Specific interpretations at high resolutions should, 

therefore, be avoided. 

If remote sensing data are not used in an NFI, maps can only be generated at the spatial resolution of 

the systematic sample grid used. Such maps cannot produce a continuous representation of a target 

variable but only give a rough idea about spatial distributions at a quite coarse scale. Typically then, one 

information is given per sample point—and these are sometimes at a distance of various kilometers.  

Using NFI data for future NFI design optimization 
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Analysis of NFI data may also be beneficial towards an optimization of the inventory design for the 

planning of subsequent inventories. Of course, in doing so, one must be cautious when changing the NFI 

design between subsequent cycles as consistency is necessary in time series. Still, design adaptations 

carried out from time to time may increase efficiency, and, frequently, new target variables need to be 

integrated so that the NFIs can meaningfully respond to newly emerging issues. 

Also, time consumption may be optimized by introducing new measurement devices. The control 

measurements might be re-organized and target accuracies newly defined. It is also important to note 

that new technologies may imply reductions in the size of field teams. 

In this context, it may be interesting to check whether a reduction of the number of sub-plots in a 

cluster-plot design would lead to a significant reduction in precision of estimation. It may turn out that 

for some target variables a smaller number of subplots would be enough. Such an optimization analysis 

can easily be implemented by carrying out the data analysis for a smaller number of sub-plots per 

cluster, thus reducing the plot size per selected sampling unit. 

Using NFI data in academics 

The main (and default) task of NFI data analysis is to generate the core results that the stakeholders and 

decision makers demanded in the information needs assessment. However, NFI data are also a great 

source for many other purposes such as research and academic teaching; sometimes, NFIs are the only 

projects that generate a base of scientifically sound data over the forests or even landscapes of an entire 

country. 

Many topics can be analyzed from NFI data, including methodological questions (such as evaluations on 

optimizing inventory designs or on the application or adaptation of models) and subject matter 

questions (yield issues, comparison of species compositions and locations, drivers of forest loss, and so 

on). These types of analyses are not a standard task of the inventory team but require that the 

databases are made available to researchers. 

Academic research that uses NFI data contributes also to educate future NFI experts so that NFI 

planners and analysts should proactively foster the use of NFI data in academia, in research and 

teaching (Liang and Gamarra 2020). In particular in longer term forest monitoring systems, valuable time 

series are available that allow monitoring the forest development and the sustainability of the national 

forest policies. 
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There are research studies that use data from repeated NFIs to update yield tables (e.g. Staupendahl 

and Schmidt 2016) or that identify the suitability of tree species under climate change (e.g. Prasad et 

al. 2020). 

Two examples of specific research studies are the estimation of the forest edge length from the 

German NFI data at different scales that the plot design offered in Kleinn et al. 2011; and the 

comparison of the stocks of trees outside the forest (TOF) from 12 FAO-supported NFIs in the Global 

South (Schnell et al. 2015). 

Researchers may be interested in the large area and long-term data sets from national forest monitoring 

programs when they wish to examine specific methodological or subject-matter questions. For example, 

systematic samples of cluster plots contain information about landscape fragmentation: if the forests 

are more fragmented, there will be more intersections with the cluster plots and a smaller number of 

cluster plots is fully contained within or outside the forest, not having intersections. From the number 

and proportion of intersecting clusters, one may derive estimates of the general fragmentation status—

as, for example, presented by Kleinn (2000) for a large area inventory in Costa Rica—or estimates of the 

forest edge length for the whole region or sub-national reference units, as was done in Kleinn et al. 

(2011) for Germany. 

 

 

Did you know? 

In a lecture given by one of the authors, a student raised the question whether growing stock is higher 

at greater slope classes because the tree crowns get more light and the surface area is bigger than in the 

plane. The lecturer had access to the NFI database of the German NFI, that allows for flexible analyses 

by combining variables. Linking growing stock as a response variable and slope classes as categories, the 

graph below could quickly be produced, allowing for a preliminary answer to that question.  
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Growing stock [m³/ha] over slope classes [%] – a graph rapidly produced by analysis of data from the 

German NFI responding to a student´s question: Does growing stock tend to be higher at steeper slopes 

(at least up to an upper slope limit) because the terrain surface area is larger? 

 

Major characteristics of products from data analyses 

The major features that characterize data analyses are essentially the same that also characterize 

reporting and that have been formulated in general terms as the guiding principles in the Enhanced 

Transparency Framework (UNFCCC 2020): transparency, accuracy, consistency, completeness, 

comparability—and all this manifested in a comprehensive documentation. It is essentially the 

combination of these features that makes data analyses from NFIs credible for the stakeholders and 

users of the data. 

One always needs to be aware that NFI results enter into the domain of forest-related policies in a 

country and that there are different interests at stake: not all stakeholders may be happy with the 

results for multiple reasons. 

Then, it is of utmost relevance that: 

• the data analysis is 'waterproof' and correct and can be defended on the basis of the complete 

and transparent documentation; and 

• the interpretation of the flndings is compatible with the results of the analyses. Interpretation 

from different actors may then vary under the same results and statistics, based on particular 

ideas and values of different interest groups—but this is then outside of the reach of the data 

analyst. 
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The role of data analyses for reporting of forest inventories 

It probably has become clear now that data analysis predates reporting. Data analysis takes place 

between data collection/data management and reporting. Hence, when performing data analyses it is 

important to look at both sides: where the data comes from (i.e. data collection/data management) and 

how the outcomes of the analysis intend to be used and processed (i.e. reporting). 

It is thus imperative that data analysis and reporting are closely interlinked and, if different experts are 

working in these domains, they need to work closely together. Consequently, early and intermediate 

results may be discussed, interpreted and compared so that potential inconsistencies may be detected 

early. This would be particularly useful as such inconsistencies may very well be an expression of 

unexpected results or, more simply, they may be caused by mistakes in calculations or mistakes in data 

collection. 

It is sometimes underestimated how time-consuming data analyses are with all the cross- checking for 

data quality and consistency of results—and eventually complying with all expectations expressed in the 

INA. 

Summary 

Before we conclude, here are the key learning points of this lesson. 

• It is helpful to have a clear idea of potential products from NFI data analyses in the planning 

phase and during the information needs assessment (INA). 

• Forest data analysis information can be used to generate standard statistics and can support to 

generate remote sensing-based maps and can also be used to optimize future NFI designs, and 

for research and academia. 

• Maps are a common and convincing presentation of NFI results; often and for many more easily 

accessible and more convincing than statistics. 

• Data analysis needs to look at both the data source (as part of data collection/data 

management) and where the outcomes of the analysis shall be used and processed (reporting). 

 

 
 


